EDITORIAL REPORT ON NOMENCLATURE, 1952.*

Inorganic

Poly-acids.-Reference was made in the 1950 Report ($J ., 1950,3699$) to the use of the names, di-, tri-, and tetra-sulphuric acid for $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}, \mathrm{H}_{2} \mathrm{~S}_{3} \mathrm{O}_{10}$, and $\mathrm{H}_{2} \mathrm{~S}_{4} \mathrm{O}_{13}$, respectively. This use has proved convenient also in later papers (e.g., J., 1952, 3916), as has a similar use for phosphorus poly-acids, viz., $\mathrm{Na}_{3} \mathrm{P}_{3} \mathrm{O}_{9}$ sodium trimetaphosphate and $\mathrm{Na}_{4} \mathrm{P}_{4} \mathrm{O}_{12}$ sodium tetrametaphosphate ($J ., 1952,1314,1317$).

Nitrogen Acids-The name, sodium oxyhyponitrite, has been used for the compound $\mathrm{Na}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$, of which two forms, designated α - and β-, exist ($J ., 1952,338,346$) ; the name is derived formally from sodium hyponitrite, $\mathrm{Na}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$, structural implications being avoided.
" Lyate-ion" Salts.-Salts of which the anion is identical with the anion of the solvent have been termed " lyate-ion" salts (J., 1952, 2494).

Organic
Three developments in organic nomenclature during 1952 have maximum importance. The rules mentioned in 1, 2, and 3 below have been approved by the Chemical Society for use in its publications, and nomenclature in all manuscripts submitted henceforth should conform to these rules.

1. I.U.P.A.C.-The first instalment of the revision of the Definitive Report by the Commission of Nomenclature of Organic Chemistry has been published by I.U.P.A.C. in its final form. The whole of the organic rules, embodying both the old and the new rules, is printed as Appendix 1 (p. 5064) of this issue. It is hoped to print in these Editorial Reports on Nomenclature the whole set of rules in their most modern form each time that a major definitive revision is officially adopted by I.U.P.A.C. The rules printed in Appendix 1 are accompanied by comments by the Editor (of the Chemical Society) which are designed (a) to indicate how old rules not yet revised are affected by revision of other rules, (b) to explain the changes required in British nomenclature, and (c) to comment on certain of the older rules with particular reference to British nomenclature.

A considerable number of small changes is involved, but all authors should note particularly the following two points of general application :
(a) "Oxo" is to be used in place of " keto " when the oxygen atom of a CO group is specified by means of a prefix in the name of a compound; " keto" continues in use only for generic descriptions (see p. 5072).
(b) Groups $\mathrm{CO}_{2} \mathrm{R}$, when named as prefixes, are to be designated on the pattern of methoxycarbonyl (not carbomethoxy) (see p. 5087). This does not however imply abandonment by the Society of the principle of substitutive rather than additive nomenclature; this matter is discussed in greater detail on p. 5061.
2. Carbohydrates.-A series of rules for the nomenclature of carbohydrates has been agreed by Committees of the British and American Chemical Societies. Important changes are involved for both countries. The new rules are printed in full in Appendix 2 (p .5108) and come into force forthwith. Further aspects of carbohydrate nomenclature are under discussion between the British and American Committees.
3. Organophosphorus and Allied Compounds.-A series of rules for the nomenclature of organophosphorus and allied compounds has been agreed by Committees of the British and American Chemical Societies, and further aspects are under discussion. The agreed rules concern compounds containing one atom of phosphorus, arsenic, or antimony; they are printed in full in Appendix 3 (p. 5122) and came into force in October 1952 when their availability as preprints was announced in the Society's Proceedings. The principal changes from previous British nomenclature ($J ., 1951,3516$) are for compounds in which halogen or nitrogen is linked directly to phosphorus, arsenic, or antimony. "Carbon acids" which are both acids and imides, i.e., contain the group $-\mathrm{C}(. \mathrm{NH}) \cdot \mathrm{OH}$ are termed imidic acids (cf. J., 1950, 3702). In

[^0]the same way, phosphorus acids which can be considered both (i) as acids and (ii) as acid halides, amides, or imides, have terminations such as -phosphonochloridic acid, -phosphinamidous acid, and the like. The rules and examples should be studied for the logical extension of this principle to the whole field.

Mixed Pyrophosphoric Esters.-The naming of the mixed ester (I) ($J ., 1952,3670$) presented some difficulty because, pending the outcome of British-American discussion about compounds containing more than one phosphorus atom, it was desired to avoid creation of a novel precedent.

Accordingly, a mixed anhydride nomenclature was used, (I) being named O-benzylphosphorous $O O$-diphenylphosphoric anhydride. The symmetrical ester (II) was conventionally named dibenzyl pyrophosphite. It is hoped that similar nomenclature may suffice at least until British-American accord is reached.

Organo-silicon Compounds.-Details of the nomenclature of these are given in I.U.P.A.C. rules 70.1—70.20 (p. 5077).

Sulphur-Nitrogen Compounds.-A logical nomenclature for a series of such compounds has been propounded ($J ., 1952,1572$). The name sulphoximine was earlier adopted ($J ., 1950$, 2081, 3701) for the series (III), being a contraction of sulphoxidimine which follows by analogy with phosphinimine $\mathrm{R}_{3} \mathrm{P}^{\prime} \cdot \mathrm{NR}^{\prime}$. The compounds (IV) thus become $S S$-dialkyl- N-toluene- p -

(III)

(IV)

(V)

(VI)
sulphonylsulphoximines. Substances derived from the (unknown) parent (V), hitherto called dialkylsulphilimines, are renamed dialkylsulphidimines, by a similar analogy; the stable compounds (VI) then become $S S$-dialkyl- N-toluene- p-sulphonylsulphidimines.

The older name sulphilimine was used in a later paper ($J ., 1952,2792$) which however was submitted before the above proposals were published.

Epidioxides.-The word epoxide or prefix epoxy is the correct designation for an oxygen atom attached to two different carbon atoms of the same carbon skeleton. Consequently, the systematic names epidioxide and epidioxy should be used in place of peroxide and peroxy for similar linkage of carbon atoms by means of $-\mathrm{O}_{2}-$ (cf. $J ., 1952,4883,4890,4894$).

Thiolsulphonic Acids._Acids, $\mathrm{R} \cdot \mathrm{SO}_{2} \cdot \mathrm{SH}$, have been named thiolsulphonic acids ($J ., 1952$, 3728), by analogy with thiolcarboxylic acids, $\mathrm{R} \cdot \mathrm{CO} \cdot \mathrm{SH}$ (I.U.P.A.C. rule $30, \mathrm{p} .5068$).

Carbohydrates.-For the new British-American rules see Appendix 2, p. 5108. The following additional points may be noted.

The trivial name phenylosotriazole was used (cf. Haskins, Hann, and Hudson, J. Amer. Chem. Soc., 1946, 68, 1766) to describe the derivatives of 2 -phenyl-2:1:3-triazole which are obtained by the action of copper sulphate on sugar phenylosazones, $\mathrm{C}_{(1)}$ and $\mathrm{C}_{(2)}$ of the parent sugar forming part of the triazole ring, e.g., glucose phenylosazone \longrightarrow glucose phenylosotriazole (2-phenyl-4-D-arabotetrahydroxybutyl-2:1:3-triazole) (J., 1952, 4993).

Cyclitols.-Proposals for the nomenclature and numbering of cyclitols were made (J., 1952, 686); but pending international discussion were restricted to the necessities of the chemistry under discussion in the particular paper, which should be consulted for details. For a minor modification of customary symbolism see J., 1952, 738.

Aliphatic Azoxy-compounds.-" Symmetrical" aliphatic azoxy-compounds were named by analogy with azoxybenzene (J., 1952, 4191). Thus, (VII) was termed 1-azoxypropane, (VIII)

2-azoxypropane, (IX) 2-azoxy-2 : 5-dimethylhexane, (X) α-azoxyisobutyric acid, and (XI) ω-azoxy- p-chlorotoluene.
β-Amino-acids.-The β-amino-acids isomeric with thyronine and thyroxine were named β-thyronine and β-thyroxine, respectively (J., 1952, 827).
cis-trans-Isomerism.-The rules which have received " tentative" approval by I.U.P.A.C. (Compt. rend. of the 16 th Conference, 1951, p. 102) are being used in the Journal pending a final ruling. They are exemplified by the names 2 -methylpent-trans-2-ene for (XII) and 3-tert.-butylhexa-cis-2 : cis-4-diene for (XIII), cis and trans having relation to the backbone.

(XII)

(XIII)

(XIV)

A somewhat different method was required ($J ., 1951,3387$ and later papers) for the special case of muconic acid derivatives where the trivial name made the above inapplicable. It may be illustrated by β-methyl-cis-trans-muconic α-amide δ-methyl ester for (XIV), the terms cis and trans being cited in positional order, i.e., the first cited referring to the lower-numbered double bond.

Per.-The American Chemical Society has adopted the following rule on a tentative basis (Chem. Eng. News, 1952, 30, 4514) :
" The terms ' perbromo,' 'perchloro,' ' perfluoro,' and ' periodo' may be applied to organic compounds or groups and shall denote substitution of all hydrogen atoms attached to carbon atoms except those whose substitution would affect the nature of the functional groups present. ' Per' may refer to the whole word or to part of the word to which it is attached, but not to more than one word. Parentheses should be used where necessary to avoid ambiguity as to whether ' per' refers to part of a name or to a whole name.

$\mathrm{C}_{6} \mathrm{~F}_{1} \cdot{ }^{\circ} \mathrm{CF}_{3}$
$\mathrm{C}_{3} \mathrm{~F}_{7} \cdot \mathrm{CHO}$
$\mathrm{C}_{2} \mathrm{H}_{5} \cdot \mathrm{CO} \cdot \mathrm{O} \cdot \mathrm{C}_{4} \mathrm{Cl}_{9} \ldots \ldots$
$\mathrm{CBr}_{3} \cdot \mathrm{CBr}_{2} \cdot \mathrm{CH}: \mathrm{N} \cdot \mathrm{OH}$ $\left(\mathrm{CCl}_{3}\right)_{2} \mathrm{CCl} \cdot\left[\mathrm{CCl}_{2}\right]_{3} \cdot \mathrm{CCl}_{3}$

$$
\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{C}_{5} \mathrm{Cl}_{11}
$$

perfluoro(methylcyclohexane)
perfluorobutyraldehyde
perchlorobutyl propionate
perbromopropaldoxime
perchloro-(2-methylhexane)
(perchloropentyl)benzene
perfluoro(decahydro-1-methylnaphthalene)
" It should be noted that this use of 'per' excludes names in which 'per' is preceded by other prefixes. Thus $\mathrm{CF}_{3} \cdot \mathrm{CClF} \cdot \mathrm{CF}_{3}$ would be called 2-chloroheptafluoropropane and not 2-chloroperfluoropropane. The reason for this limitation is to avoid the implication that some other atom rather than hydrogen has been substituted."

This rule will be adopted in our publications, pending discussion by I.U.P.A.C.
The use of perhydro to denote complete hydrogenation is, of course, of long standing.
Use of " H " to designate the Positions of Hydrogen in almost completely Halogenated Organic Compounds.-The American Chemical Society has adopted the following rule on a tentative basis (ibid., p. 4515) :-
" In halogenated compounds or groups the position of the hydrogen atoms may be indicated by a prefix if the following conditions are met:
" 1. The hydrogen atoms are not part of a functional group.
" 2. Ordinarily the number of such hydrogen atoms will be not greater than four and the ratio of such hydrogen atoms to the halogen atoms which are of a single kind and not part of a functional group will be not greater than 1:3.
" This prefix shall consist of the numbers of the carbon atoms to which the hydrogen atoms are attached, each followed by the letter H.
" Examples: $\mathrm{CHF}_{2} \cdot \mathrm{CF}_{2} \cdot \mathrm{CF}_{2} \cdot \mathrm{CHF}^{-} \mathrm{CF}_{3} \ldots \ldots . . \quad 1 H: 4 H$-decafluoropentane
$\mathrm{CHClF} \cdot \mathrm{CF}_{2} \cdot \mathrm{CF}_{3} \ldots \ldots \ldots \quad 1 \mathrm{H}$-1-chlorohexafluoropropane
$\mathrm{CHF}_{2} \cdot \mathrm{CF}_{2} \cdot \mathrm{CF}_{2} \cdot \mathrm{CF}_{2} \cdot \mathrm{CO}_{2} \mathrm{H} \quad \ldots .$. . 5 H -octafluorovaleric acid
$\mathrm{C}_{6} \mathrm{~F}_{13} \cdot \mathrm{CHF} \cdot \mathrm{CHF} \cdot{ }^{\circ} \mathrm{C}_{6} \mathrm{~F}_{13}$

$2 H: 4 H$-Decafluoromesitylene
$7 H: 8 H$-octacosofluorotetradecane

$3 H$-Hexachloro-2-nitrotoluene

The above rule, subject to the rigid limitations laid down in it, may be used in the Chemical Society's publications, pending a decision by I.U.P.A.C.

The rule printed in Chem. Eng. News (loc. cit.) envisages its occasional extension to highly substituted derivatives where the substituents are not halogens, and also includes an example incorporating also the use of H for " extra " (" indicated ") hydrogen in a ring. In our Society's publications however the use of H in the sense of this rule will be restricted to the cases covered by the wording cited above.

Des-steroids. -The problem arose of naming compounds containing three of the steroid rings, each of known stereochemistry, in such a way as to show the structural and stereo-

chemical relation to the steroids. For this purpose, cholestane stripped of the four methylene groups of ring a was termed des-A-cholestane, and the sterol numbering was retained (des was preferred to de, in this exceptional case, so as to avoid ambiguity in speech-des-d is preferable to de-D) (J., 1952, 1224). An example is des-A-cholest-6-en-5-one (inset) [systematic name, which does not specify the configuration: 1-(1:5-dimethylhexyl)- $\Delta^{{ }^{1}}$ -decahydro-7a: 4^{\prime}-dimethyl-3'-oxo-4: 5-benzindene].
Triterpenoids.-After appropriate consultations, the hitherto general pictorial representation of triterpenes has been reversed and conventions have been defined for denoting the stereochemistry of the various asymmetric centres. These forms should be followed in the Society's publications. The original paper (J., 1952, 2862) should be consulted for details.

Avene, Arylene.-These terms are acceptable within the limits of the following definitions adopted by the American Chemical Society (Chem. Eng. News, 1952, 30, 4513).

Arene : Any aromatic hydrocarbon. The term aromatic hydrocarbon denotes any hydrocarbon in which at least one benzene ring is present. Examples: benzene, butylbenzene, styrene, phenylacetylene, phenylcyclohexene, terphenyl, indane, naphthalene, dihydroanthracene, cyclopentenophenanthrene, pyrene, hexacene.

Arylene: Any bivalent radical derived from an aromatic hydrocarbon by removal of a hydrogen atom from each of two carbon atoms of the nucleus. Examples: phenylene, naphthylene, diphenylene.

Heteroaromatic.-The term heteroaromatic has been used, as an adjective, in cases when a group CH (or, when appropriate, CH_{2}) of a ring of an aromatic compound is replaced by an atom other than carbon. This may be made more specific, as in, e.g., N-heteroaromatic (pyridine, pyrimidine; $J ., 1952,1461,2911$) or S-heteroaromatic (thiophen).

It will be noted that there is some conflict between this usage and the American definition of an aromatic hydrocarbon inasmuch as use of the American definition in application of the term heteroaromatic would exclude five-membered ring compounds. This difference will not be pursued at present.
spiro-Compounds.-The nomenclature outlined for spiro-compounds in last year's Report ($J ., 1951,3517$) has proved useful in further cases (see, e.g., J., 1952, 866 et seq., 1436, 4351, 4523).

Heterocyclic Compounds.-For a compound formally derived by three-carbon fusion of pyrazole and anthrone skeletons, no decision was possible between formulæ ($\mathrm{XV} ; \mathrm{R}=\mathrm{H}$) and (XVI; $\mathrm{R}=\mathrm{H}$). The indeterminate name I : 9-pyrazoloanthrone was therefore used ($J ., 1952$,

1630). However, the two N-methyl derivatives $(\mathrm{R}=\mathrm{Me})$ were also obtained and their constitutions were proved; systematic names were used for these, viz., (XV) l'-methylpyrazolo($5^{\prime}: 4^{\prime}: 3^{\prime}-1: 13: 9$) anthrone and (XVI) 1^{\prime}-methylpyrazolo $\left(3^{\prime}: 4^{\prime}: 5^{\prime}-1: 13: 9\right.$) anthrone.

Carbolines have been named and numbered in a remarkable variety of ways. The method now current in the Journal, with the object of minimising obscurities, is to distinguish the four

(XVII) $\alpha-$

(XVIII) β -

(XIX) γ^{-}

(XX) δ -
isomers as $\alpha-, \beta-, \gamma$ - and δ-carboline (XVII-XX) and to use Ring Index numbering, as shown (cf. J., 1952, 650).

In many other cases also, Ring Index numberings (and names) continue to prove both useful for clarity and desirable for uniformity.

Alkaloid chemists will note recent clarification of nomenclature of thebaine derivatives (J., 1952, 958, 969).

Oxa-aza-nomenclature in the Aliphatic Series.-Use of the oxa-aza-nomenclature for aliphatic compounds has not been sanctioned by I.U.P.A.C., but occasionally proves very useful. For instance, the compound (XXI) was named 5-oxanonamethylenebis-2:2'-(1:2:3:4-tetrahydro-6:7-dimethoxy-2-methylisoquinolinium iodide), and a similar system was used for its hexa-methoxy-analogue, uniformity being thus retained with numerous analogues containing an " unbroken " central carbon chain (J., 1952, 1311).

Isotopically Labelled Compounds.-The nomenclature outlined in last year's Report (J., $1951,3516)$ continues to prove useful and adaptable. Some self-explanatory examples are: ε-benzoyl-L- $\left[\alpha-{ }^{15} \mathrm{~N}\right]$ lysine, $\left[\right.$ carboxy $\left.-{ }^{14} \mathrm{C}\right]$ lysine, $\left[\alpha{ }^{-14} \mathrm{C}\right]$ lysine, methyl 2-ketocyclohexane-1- $\left[{ }^{14} \mathrm{C}\right]$ carboxylate, ethyl phthalimido $\left[\alpha-{ }_{-14} \mathrm{C}\right]$ malonate, $\mathrm{DL}-\left[\right.$ carboxy $\left.-{ }^{-14} \mathrm{C}\right]$ tyrosine (J., 1952, 1329, 3464).

Conformation, Constellation.-These two words have been used with the same significance in discussions of three-dimensional representations. Constellation has an astronomical meaning which is foreign to, and in some respects inconsistent with, the desired interpretation; accordingly, conformation should be used in the Society's publications. On the other hand, conformation is stated to have no steric significance in certain Continental languages, e.g., German, and so constellation will perhaps continue to be used in these languages.

Carbinol.-Carbinol has been used as a name for the parent group $\mathrm{CH}_{3} \cdot \mathrm{OH}$ in substituted compounds of the type $C R R^{\prime} \mathrm{R}^{\prime \prime} \cdot \mathrm{OH}$ where sometimes one or two of the groups R is H . Thus, diphenylcarbinol has been used for $\mathrm{CHPh}_{2} \cdot \mathrm{OH}$, ethylpropylcarbinol for $\mathrm{CHEtPr} \cdot \mathrm{OH}$, triethylcarbinol for $\mathrm{CEt}_{3} \cdot \mathrm{OH}$. Such nomenclature is very rarely justified under modern conditions; now that methanol is universally recognised as denoting $\mathrm{CH}_{3} \cdot \mathrm{OH}$ it can normally be used in place of carbinol without loss of clarity; thus, diphenylmethanol is immediately intelligible, as well as being I.U.P.A.C. nomenclature (p. 5096) ; hexan- 3 -ol is immediately recognisable as $\mathrm{CHEtPr} \cdot \mathrm{OH}$; triethylmethanol is as descriptive as, and no more incorrect than, triethylcarbinol, admittedly more descriptive than the correct name 3 -ethylpentan- 3 -ol (which should however also be given at least once for indexing). The carbinol names are occasionally useful when discussing a series of such compounds, but should otherwise be avoided. Further, carbinol as a class name can always be replaced by the accurate " alcohol." Carbinyl (to denote the radical) is not permitted.

Substitutive v. Additive Nomenclature.-In systematic organic nomenclature, substituents are named as prefixes or suffixes attached to the name of the parent compound. Simple examples are nitrobenzene, m-dinitrobenzene, 2:4-dinitroaniline, 1 -chloro- $3: 5$-dinitrobenzene, hexan-2-ol, hexanoic acid, benzenesulphonic acid, naphthalene-1:5-disulphonic acid, 2 -chlorocyclohexanecarboxylic acid.

Such names are compounded of (a) one parent name, which by itself specifies a compound capable of independent existence, and (b) one or more names of substituent groups which have
no independent existence (except sometimes as radicals or ions). Use of prefixes or suffixes in this way implies that one hydrogen atom of the parent compound is replaced by each substituent group; therein lies the criterion of "substitutive" nomenclature.

If a substituent is itself substituted, the same principle applies : amino- denotes $\mathrm{NH}_{2}-$, and methylamino- denotes $\mathrm{CH}_{3}-\mathrm{NH}-$, one hydrogen atom of the substituent $\mathrm{NH}_{2}-$ having been replaced by the secondary substituent methyl group.

This relatively simple system is complicated in various ways by old-established custom and by special devices for complex and particular cases.

One obvious particular case is the prefix hydro, which denotes addition of a hydrogen atom; replacement here would be meaningless.

Many of the older customs are derived from the binary nomenclature of inorganic chemistry, e.g., -ic acid, ethyl acetate; others are old methods of clarifying an over-simple name, e.g., ether \longrightarrow ethyl ether \longrightarrow diethyl ether and ethyl methyl ether; some have specialised origin, e.g., amines, where a radical name has an invented (or semi-invented) amine ending, as in butylamine, diethylamine. (The alkoxy prefix is, however, derived on classical lines: oxy was the accepted name for a HO-substituent before it was replaced by hydroxy; $\mathrm{CH}_{3}-\mathrm{O}$ - thus, by classical substitution, became methyloxy, abbreviated to methoxy.)

Many deviations from substitutive orthodoxy for complex cases arise from a desire for clarity or to facilitate indexing or both. The compound (XXIII) is termed 2 -indolylacetic acid in British nomenclature, but indole-2-acetic acid in American practice so that it can be indexed under the heading Indole. Although in this case it may be argued that indexers should suit their practice to nomenclature rather than dictate nomenclature to suit their convenience,

(XXIII)

(XXIV)

(XXV)
other considerations often arise. Thus, for instance, indole-2-acetic-3 β-propionic acid conveys structure (XXIV) to a chemist more clearly than does β-(2 -carboxymethyl-3-indolyl)propionic acid; and for (XXV) benzene-1:2:4:5-tetra-acetic acid is more " pictorial" than 1:2:4:5tetrakiscarboxymethylbenzene.

The significant feature of these "deviating" names is that each part-indole, benzene, acetic acid, propionic acid-denotes a substance in itself, and in juxtaposing them (with inserted positional numerals) there is no indication of the replacement of hydrogen atoms. Such nomenclature is one type of "additive" nomenclature-two substance names are simply added together. It is not used in British nomenclature for simple cases such as (XXIII), but is permitted for complex cases where it greatly improves clarity.

A second type of additive nomenclature is less general and has less justification, namely, juxtaposition of two radical names, again without attention to the fact that according to classical principles juxtaposition implies loss of hydrogen. This occurs in the use of certain prefixes for bivalent groups. It does not occur when bivalent groups are substituted into the same parent compound; thus, in names such as epoxycyclohexane, 2-oxocyclohexanecarboxylic acid, or iminocyclopentadiene, the prefixes epoxy, imino, and oxo denote replacement of 2 H by $-\mathrm{O}^{-}$, $=\mathrm{NH}$, and $=\mathrm{O}$ respectively. However, I.U.C. rule 25 (p 5068) specifies that $\mathrm{CH}_{3}-\mathrm{SO}_{2}-$, when attached to carbon, shall be named methylsulphonyl; sulphonyl is considered as the prefix for the bivalent radical $-\mathrm{SO}_{2}^{-}$(p. 5085) and this is juxtaposed to the radical name methyl; no hydrogen is replaced in this process. Per contra, according to rule 58.2 (p. 5074) benzenesulphonic acid is derived by the classical process of replacing a hydrogen atom in the parent substance by means of a suffix. Again, there has been variation in the naming of azo-compounds: $\mathrm{Ph} \cdot \mathrm{N}: N \cdot \mathrm{C}_{10} \mathrm{H}_{6} \cdot \mathrm{OH}$ has been termed benzeneazonaphthol and phenylazonaphthol; I.U.P.A.C. (p. 5098) has now laid down phenylazo as a prefix, whereby the two radicals phenyl and azo $\left(-\mathrm{N}: \mathrm{N}^{-}\right)$are juxtaposed, without loss of hydrogen. Similarly, I.U.P.A.C. has laid down (p. 5087) that the prefix denoting $-\mathrm{CO}-\mathrm{OMe}$ shall be methoxycarbonyl (and similarly for analogues), the two radical names methoxy and carbonyl ($-\mathrm{CO}^{-}$) again being additively juxtaposed without loss of hydrogen.

These three I.U.P.A.C. rulings have been accepted by the Chemical Society. The alkoxycarbonyl nomenclature in particular has considerable practical advantage (see footnote 12, p. 5087) and it has proved impossible to devise a generally acceptable alternative. Acceptance of additive radical names recommended for specific usages by I.U.P.A.C. does not, however,
imply that the Society admits the general validity of additive nomenclature for organic chemistry. Additive nomenclature, whether applied to names of parent compounds or of radicals, is accepted when clarity demands it but is regarded as the exception rather than the rule.

Typographical and Symbolism.-When abbreviations p and e are used for polar and equatorial (in the steric sense) they should be in roman type (i.e., not underlined in MS), so as to avoid confusion of $p=$ polar with $p=$ para (cf. p-substituent, para-substituent). When the word polar is used in the steric sense in the text, care must be taken to avoid possible confusion with the electrochemical meaning.

Use of the abbreviations o, m, and p should be confined to cases when they are part of a chemical name, as, e.g., in o-chlorotoluene, toluene-p-sulphonic acid, m-nitro-group. In other cases ortho, meta, and para should be written in full, e.g., ortho-effect, ortho-substituent, paragroup, meta-directing.

A specialised symbolism has been developed for discussion of molecular-rotation differences (J., 1952, 2917).

Infra-red Spectra.-The methods to be used in plotting infra-red spectra are recorded in Proceedings for Dec., 1952 (p. 164), where also are given conditions governing their acceptance for publication. These decisions were taken as a result of recommendations of a Committee on which other publishing Societies and interested Bodies were represented. (Conditions regarding ultra-violet spectra are at present being considered by a Sub-Committee of the Chemical Society.) Details of a library scheme for deposition of infra-red spectra with the Society and for photo-copies thereof may be obtained from the General Secretary, the Chemical Society.
" Notices to Authors."-A brochure entitled " The presentation of papers for the Journal of the Chemical Society" has been prepared, giving information for authors. Each Fellow of the Society is entitled to one copy, gratis, on application to the General Secretary, and further copies at the public price, which is $1 s .6 d$. per copy (post free) or $12 s .6 d$. per 10 copies (post free).

Appendix 1

Organic Nomenclature. I.U.P.A.C. Rules.

Current nomenclature for organic chemistry is based fundamentally on the Definitive Report of the Committee for the Reform of Nomenclature in Organic Chemistry, published in Comptes rendus of the 10th Conference (Liege) of the International Union of Chemistry (I.U.C.), 1930, p. 57. The Definitive Report contains 68 rules; details of two of these (rules 34 and 49) were left for consideration later, and the details were published in Comptes rendus of the 12 th Conference (Lucerne and Zurich), I.U.C., 1936, p. 40.

Although these rules are largely adopted in Gt. Britain and U.S.A., experience has shown the need for revision and expansion. Under the present constitution of the International Union of Pure and Applied Chemistry (I.U.P.A.C.; this is the revised title of I.U.C.), rules must be published as tentative in Comptes rendus of a Conference and amended or confirmed at a later meeting in the light of any comments received; thereafter the rules become definitive. Complete revision of the Definitive Report will take some years, but at the 1949 Conference rules $54-62$ were revised and a new rule 70 added, and these were confirmed after some amendment at the 1951 Conference (see Comptes rendus of the 15 th Conference, I.U.P.A.C., 1949, p. 127, and of the 16 th Conference, 1951, p. 100).

It is hoped to publish in the Editorial Nomenclature Reports those I.U.P.A.C. rules which become definitive (tentative rules will not be published). Below are given all the definitive organic rules, i.e., the whole Definitive Report as amended in part by the 1949-1951 rules.

The official text of the Definitive Report (including rules 34 and 49) is in French. The English version below is that of A. M. Patterson (J. Amer. Chem. Soc., 1933, 55, 3905) (a rendering which corresponds less closely to the official French text and leads occasionally to different interpretations was published in J., 1931, 1607). The 1949-1951 rules (nos. 54-62 and 70) were published in English in the Comptes rendus. In the text below, British conventions of italicising, punctuation, position of numerical prefixes, and spelling have been substituted throughout as appropriate.

To the rules below are appended comments and explanations by the Editor; these are either enclosed in square brackets and signed, or are printed as footnotes. Numerous comments on the rules have been published previously, notably by A. D. Mitchell (" British Chemical Nomenclature," Ed. Arnold \& Co., London, 1948), A. M. Patterson (loc. cit.), and Clarence Smith ($J ., 1936,1067$), and in Chem. Abs., 1945, 39, 5875, to whom the Editor gratefully acknowledges his debt. The comments below are not intended to duplicate these earlier discussions; they are an attempt to indicate some places where revision of the 1930 rules is implied by the 1949-1951 version of other rules, to point out where British practice still diverges from the international rules, and to draw attention to some novel aspects of the new rules and also to some aspects of the old rules which often appear to be inadequately appreciated by British chemists.

The new I.U.P.A.C. rules include "Extended Examples." These show how the rules can be applied in varied circumstances but they do no more than illustrate the particular rule in question; for instance, the extended examples of radical names show how to form names of radicals from names of substances if the latter are accepted, but they do not lay down that the particular names for the substances are definitively adopted by I.U.P.A.C.

The new rules include also a Formula Index to the radical names; this is not reprinted below.

The Comptes rendus of the 15th Conference gave a rule on "Extra Hydrogen"; a much revised version, under the title "Indicated Hydrogen," was published in the Comptes rendus of the 16th Conference, and was there stated to be definitive. There appears however to be some doubt about the status of this rule and it is therefore not reprinted below.
I.U.C. rule 34, dealing with organic derivatives of phosphorus, arsenic, and antimony, is not printed below. Current British usage is set out in the Anglo-American agreed rules on p. 5122.

In view of the decision of Council of the Chemical Society (Proc., 1951, 22; J., 1951, 3521), the new I.U.P.A.C. rules will be applied forthwith in the Society's publications; the Editor's comments draw attention to the most notable of the changes involved. However, Council's decision is not held to apply to those few of the old (1930) rules which have not hitherto been observed by the Society, because these are subject to revision by I.U.P.A.C. in the near future.

I. General

Rule 1 As few changes as possible will be made in terminology universally adopted.
Rule 2 For the present, only the nomenclature of compounds of known constitution will be dealt with; the question of substances of imperfectly known constitution is postponed.

Rule 3 The precise form of words, endings, etc., prescribed in the rules should be adapted to the genius of each language by the sub-committees.
[No such sub-committees exist. Ed.]

II. Hydrocarbons

Rule 4 The ending ane is adopted for saturated hydrocarbons. Open-chain hydrocarbons will have the generic name alkanes.
[This rule does not specify that the ending ane is reserved solely for hydrocarbons (contrast ol in rule 14, and ine in rule 33). Nevertheless such reservation is practised by the Chemical Society, though not by the American Chemical Society; e.g., dioxan in Gt. Britain, dioxane in U.S.A. Similar customs hold for unsaturated compounds; e.g., thiophen, xanthen, in Gt. Britain, but thiophene, xanthene, in U.S.A. Contrariwise, British usage retains the old urethane, which has been changed to urethan in U.S.A. Ed.]

Rule 5 The present names of the first four normal saturated hydrocarbons (methane, ethane, propane, butane) are retained. Names derived from the Greek or Latin numerals will be used for those having more than four atoms of carbon.
[This rule must now be interpreted in the light of the more recent rule 54.1 and the extended examples thereto; it will be there seen that Greek numeral roots are used, but that 9 (alone or in any of its combinations) is rendered by the Latin nona, and that $n-\mathrm{C}_{11} \mathrm{H}_{24}$ is undecane. Ed.]

Rule 6 Branched-chain hydrocarbons are regarded as derivatives of the normal hydrocarbons; their names will be referred to the longest normal chain present in the formula by adding to it the designations of the side chains. In case of ambiguity, or if a simpler name would result, that chain which admits of the maximum of substitutions will be selected as the fundamental chain.
[In view of admission of isobutyl, isopentyl, neopentyl, and isohexyl as radical names (rule 54.2 and extended examples thereto), the names isobutane, isopentane, neopentane, and isohexane must now be " preferred to the systematic names," but use of the prefix iso was deliberately restricted by the Commission to the $\mathrm{C}_{3}-\mathrm{C}_{6}$ radicals. See also the note to rule 54.2.
[The extended examples to rule 54.2 make clear that isoalkyl nomenclature is applied to unsubstituted radicals. Clearly this should apply also to the hydrocarbons isobutane, isopentane, and isohexane. It is believed, however, that in this connexion substitution refers to prefixes and that isoalkane names may be modified by suffixes, as in isohexanoic acid, isobutan-1-ol, isopentan-2-one, provided that no further substituents are present. By analogy, isopropanol becomes permissible for the unsubstituted alcohol.
[The phrases "In case of ambiguity, or if a simpler name would result" are liable to various interpretations, for which Patterson (loc. cit.) and Mitchell (op.cit., p. 43) should be consulted. Ed.]

Rule 7 In case there are several side chains, the order in which such chains are named will correspond to the order of their complexity. The chain having the greatest number of secondary and tertiary atoms will be considered the most complex. The alphabetical order may also be followed in such cases.
[For discussions of ambiguities in this rule see Patterson and Mitchell (locc. cit.). In the last sentence of the rule the word " also " should be interpreted as " alternatively." The alphabetical order is used in Chemical Society publications; for details of this see J., 1950, 3699. Ed.]

Rule 8 In the names of open-chain unsaturated hydrocarbons having one double bond the ending ane of the corresponding saturated hydrocarbon will be replaced by the ending ene; if there are two double bonds, the ending will be diene, etc. These hydrocarbons will bear the generic names alkenes, alkadienes, alkatrienes, etc.

Examples: propene, hexene, etc.
[Concerning the terminal " e " see the note to rule 4. Ed.]
Rule 9 The names of triple-bond hydrocarbons will end in yne, diyne, etc. They will bear the generic name alkynes.

Examples: propyne, heptyne, etc.
Rule 10 If there are both double and triple bonds in the fundamental chain the endings enyne, dienyne, etc., will be used. The generic names of these hydrocarbons will be alkenynes, alkadienynes, etc.
[The implications of this rule are discussed by Patterson and Mitchell (locc. cit.). Ed.]
Rule 11 Saturated monocyclic hydrocarbons will take the names of the corresponding openchain saturated hydrocarbons, preceded by the prefix cyclo. They will bear the generic name cycloalkanes.

Rule 12 When monocyclic hydrocarbons are unsaturated, rules $8-10$ will be applied. However, in the case of partially saturated polycyclic aromatic compounds the prefix hydro, preceded by di-, tetra-, etc., will be used.

Example: dihydroanthracene.
Rule 13 Aromatic hydrocarbons will be denoted by the ending ene and will otherwise retain their customary names. However, the name phene may be used instead of benzene.
[" Phene " is not used in Chemical Society publications. Ed.]

III. Fundamental Heterocyclic Compounds

Rule 14 The endings of customary names, endings which do not correspond to the function of the substance, will undergo the following modifications, so far as they are in accord with the genius of each language : (a) The ending ol will be changed to ole. Example : pyrrole. (b) The ending ane will be changed to an. Example: pyran.
[The change (b) does not decide the question raised in the note to rule 4 , for it may be argued that pyrane is not permitted either because it is not a hydrocarbon or because it is unsaturated. Ed.]

Rule 15 When nitrogenous heterocycles not having the ending ine give basic compounds on progressive hydrogenation, such derivation will be indicated by the successive endings ine, idine.

Examples: pyrrole, pyrroline, pyrrolidine; oxazole, oxazoline.
Rule 16 The ending a is adopted for hetero-atoms occurring in a ring. Oxygen will accordingly
 be indicated by oxa, sulphur by thia, nitrogen by aza, etc. The letter a may be elided before a vowel.

Examples: thiadiazole, oxadiazole, thiazine, oxazine.
While the universally accepted names of heterocyclic compounds are retained, the names of other heterocyclic compounds are derived from that of the corresponding homocyclic compounds by adding to it the names of the hetero-atoms ending in a.

Example: 2:7:9-triazaphenanthrene.
[The first paragraph is incomplete in that use of the endings " ole" and "ine" is not explained in the rules. The principle is however well-known; its extension to other than five-membered rings, as in the Ring Index, has been common in Chemical Society practice.
[It should be noted that use as in the second paragraph of the rule demands reference to the homocyclic compound as parent (cf. J., 1950, 3704, last paragraph). Ed.]

IV. Simple Functions

Rule 17 Substances of simple function are defined as those containing a function of one kind only, which may be repeated several times in the same molecule.
[The term " function" itself is not defined, nor do the rules give a comprehensive list of functional groups. The usual interpretation is in the sense of a group conferring characteristic properties on a compound. Thus, $\mathrm{OH}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{NH}_{2}$, are clearly functions (or functional groups), methyl and phenyl are not. The important rules 18 and 64 are normally and best interpreted as if the word "function" meant " a group which can be expressed as a suffix," but this is not implied elsewhere-for instance, rule 19, concerned with halogen derivatives named by prefixes, is included in section IV headed " Simple Functions," and the list of functions in rule 52 certainly excludes such a limitation for general use. Ed.]

Rule 18 Where there is only one functional group, the fundamental chain will be selected so as to contain this group. When there are several functional groups the fundamental chain will be selected so as to contain the maximum number of these groups.
[This rule is applied only when the function can be expressed as a suffix, e.g., not for halogeno- or nitro-compounds. It is lucidly discussed by Patterson (loc. cit.). Ed.]

Rule 19 Halogen derivatives will be designated by the name of the hydrocarbon from which they are derived, preceded by a prefix indicating the nature and number of the halogen atoms.
[The halide nomenclature, e.g., butyl chloride, pentamethylene dibromide, is nevertheless widely used and is accepted in Chemical Society publications, particularly for simple compounds. As Patterson remarks, rule 1 may be held to cover such long-established names as these and benzotrichloride. Ed.]

Rule 20 Alcohols and phenols will be given the name of the hydrocarbon from which they are derived, followed by the suffix ol. In accordance with rule 1 names universally adopted will be retained, as : phenol, cresol, naphthol, etc.

This nomenclature may also be applied to heterocycles. Example: quinolinol.
[Application of this rule to heterocyclic compounds is not favoured in Chemical Society publications, mainly because of the fact that, e.g., quinolinol and quinolone are not related to each other as alcohol and ketone. For the purpose of this and similar rules, e.g., ketones and aldehydes, the terminal " e " is elided before a vowel, but not before a consonant; interposition of numerals has no effect; e.g., hexan-2-ol, hexan-2-one, hexane-2:3-diol. Ed.]

Rule 21 In naming polyhydric alcohols or phenols, one of the forms, $d i$, tri, tetra, etc., will be inserted between the name of the parent hydrocarbon and the suffix ol.

Rule 22 The name mercaptan as a suffix is abandoned; this function will be denoted by the suffix thiol.
[As with other suffixes, thiol is added to the name of the hydrocarbon, not of the radical. E.g., ethanethiol, not ethylthiol. Ed.]

Rule 23 Ethers are considered as hydrocarbons in which one or several hydrogen atoms are replaced by alkoxy-groups. However, for symmetrical ethers the present nomenclature may be retained. Examples: $\mathrm{CH}_{3} \cdot \mathrm{O} \cdot \mathrm{C}_{2} \mathrm{H}_{5}$ methoxyethane; $\mathrm{CH}_{3} \cdot \mathrm{O}^{\circ} \mathrm{CH}_{3}$ methoxymethane or methyl ether.
[Nevertheless, " the present nomenclature" is still often used for unsymmetrical ethers in Chemical Society publications, particularly in simple cases, e.g., ethyl methyl ether, methyl naphthyl ether, phenyl propyl ether. Ed.]
Rule 24 Oxygen linked, in a chain of carbon atoms, to two of these atoms will be denoted by the prefix epoxy in all cases where it would be unprofitable to name the substance as a cyclic compound.

Examples: ethylene oxide $=$ epoxyethane; \quad epichlorohydrin $=3$-chloro-1 : 2-epoxypropane; tetramethylene oxide $=1: 4$-epoxybutane.
[The more usual name for the last example is, of course, tetrahydrofuran. This merely shows the unwisdom of rules containing vague phrases such as "cases where it would be unprofitable to . . ." Ed.]

Rule 25 Sulphides, disulphides, sulphoxides, and sulphones will be named like the ethers, oxy being replaced by thio, dithio, sulphinyl, and sulphonyl, respectively.

Examples: $\quad \mathrm{CH}_{3} \cdot \mathrm{SO}_{2} \cdot \mathrm{C}_{2} \mathrm{H}_{5}$ methylsulphonylethane; $\mathrm{CH}_{3} \cdot \mathrm{~S}^{2} \mathrm{C}_{3} \mathrm{H}_{7}$ methylthiopropane; $\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{SO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{3}$ 1-propylsulphinylbutane.
[Nevertheless nomenclature such as ethyl methyl sulphide, methyl propyl sulphone, butyl propyl sulphoxide, diethyl disulphide, is often used in Chemical Society publications. See also footnote 9 (p. 5086). Ed.]

Rule 26 Aldehydes are characterised by the suffix al added to the name of the hydrocarbon from which they are derived; thioaldehydes by the suffix thial. Acetals will be named as 1: 1-dialkoxyalkanes.
[This rule has not found general acceptance for simple cases, which can be regarded as covered by rule 1 (e.g., acetaldehyde, benzaldehyde, glyoxal). Rule 26 can often not be applied when the CHO group is attached directly to a ring, as in 3-formylthiophen (thiophen3 -aldehyde). Also the acetal nomenclature is still widely used and, in some cases, e.g., carbohydrates, the alkoxy-nomenclature cannot be conveniently adopted. Ed.]

Rule 27 Ketones will receive the ending one. Diketones, triketones, thioketones will be designated by the suffixes dione, trione, thione.

Rule 28 The name keten is retained.
[The name is cétène in the French text, ketene in Patterson's translation, but keten in Chemical Society publications-see comment on rule 4. Ed.]

Rule 29 For acids the rule of the Geneva nomenclature is retained. However, in cases where the use of that nomenclature would not be convenient the carboxyl group will be considered as a substituting group and the name of the acid will be formed by adding to the name of the hydrocarbon the suffix carbonique or carboxylic, according to the language.
[The Geneva nomenclature was that which led to names such as hexanoic, hexane-1 : 6dioic, hex-2-enoic acid ($\mathrm{CO}_{2} \mathrm{H}=1$). Rule 29 accords with present British practice as laid down in $J ., 1950$, 3701. That the common trivial names should be considered to be covered by rule 1 is shown by the examples of acid radicals listed in the more recent rule 58.3 . The examples for rule 32 are therefore unfortunate as the usual names butyryl chloride and butyramide should clearly be acceptable. The examples for acid radicals (rule 58.3) show that trivial names are accepted up to C_{5} and, as alternatives, for higher fatty acids, e.g., stearic. Ed.]

Rule 30 Acids in which an atom of sulphur replaces an atom of oxygen will be named according to the Geneva nomenclature. Example: ethane-thioic, -thiolic, -thionic, -thionothiolic. If the carboxyl group is considered as a substituent the compounds will be named carbothioic acids. The suffix carbothiolic will be used if it is certain that the oxygen of the OH group is replaced by sulphur; the suffix carbothionic if it is the oxygen of the $C O$ group; the suffix carbodithioic will be used if both atoms are replaced.

Rule 31 The existing conventions will be retained for salts and esters.
Rule 32 Acid anhydrides will retain their present mode of designation according to the names of the corresponding acids. For names formed in accordance with the Geneva nomenclature, the amide, amidoximes, amidines, imides, and nitriles will be named like the acids by adding to the name of the corresponding hydrocarbon the endings amide, amidine, amidoxime, imide, and nitrile, respectively, while the halides will be named by combining chloride, etc., with the name of the radical. Examples: $\mathrm{C}_{3} \mathrm{H}_{7} \cdot \mathrm{COCl}$ butanoyl chloride; $\mathrm{C}_{3} \mathrm{H}_{7} \cdot \mathrm{CO} \cdot \mathrm{NH}_{2}$ butanamide; etc.

If the carboxyl group is considered as a substituent the endings carbonamide, carbonamidine, carbonamidoxime, carbonimide, carbonitrile will be used. Examples: $\mathrm{C}_{3} \mathrm{H}_{7} \cdot \mathrm{COCl}$ propanecarbonyl chloride; $\mathrm{C}_{3} \mathrm{H}_{7} \cdot \mathrm{CO} \cdot \mathrm{NH}_{2}$ propanecarbonamide; etc.
[Considerable further detail will be required when the rule is revised. For instance, the more recent rule 58.7 restricts the imido-radical termination to cyclic imides, but there is no
instruction how to name non-cyclic imides. However, the extended examples include diacetylamino $\left(\mathrm{CH}_{3} \cdot \mathrm{CO}\right)_{2} \mathrm{~N}^{-}$, and acetimidoyl $\mathrm{CH}_{3} \cdot \mathrm{C}(: \mathrm{NH})^{-}$, showing that the parent substances should be diacetylamine, and acetimidic acid (cf. J., 1950, 3702 for the last). This practice should be followed in Chemical Society publications, except that the long-established diacetimide and triacetimide will be retained (rule 1).
[Names such as butanonitrile, $\mathrm{C}_{3} \mathrm{H}_{7} \cdot{ }^{\cdot} \mathrm{CN}$, have not become established.
[The second paragraph of the rule does not correspond to the Chemical Society's practice, where the terminations given in the rule are replaced, as appropriate, by carboxyamide, carboxyamidine, and carboxyamidoxime. When trivial names for the acids exist, these may be used, e.g., butyramide, butyramidine, and butyramidoxime. There is no British equivalent to "carbonitrile," the substances being called either (i) cyanides (e.g., ethyl cyanide) embodying the name of the alkyl radical, or (ii) nitriles (e.g., propionitrile) derived from the trivial name of the acid. This section of the I.U.C. rule is based solely on the French carbonique, to the exclusion of the English carboxylic, and until it is reconsidered by I.U.P.A.C. in conjunction with the more recent rule 58.1, the Chemical Society's present practice as outlined above will be continued.
[However, British practice for acid halides has been more variable. The ending carbonyl chloride was confirmed by the extended examples to the recent rule 58.1 (p. 5085) which include cyclohexanecarbonyl chloride, and this ending will in future be used in Chemical Society publications for halides of acids named as carboxylic acids. Ed.]

Rule 33 The ending ine is reserved exclusively for nitrogenous bases. The present nomenclature of monoamines is retained. For polyamines, the name of the hydrocarbon will be followed by the suffixes diamine, triamine, etc.

For aliphatic compounds containing quinquevalent nitrogen the ending ine will be changed to onium. For cyclic substances containing quinquevalent nitrogen in the ring the ending ine will be changed to inium; for those with the ending ole, this will be changed to olium.

Examples: pyridine, pyridinium; iminazole, iminazolium.
[Names of the type ethylenediamine, phenylenediamine, etc., rather than ethanediamine, benzenediamine, etc., are however, still current usage for simple cases. Ed.]

Rule 34 [I.U.C. names for organic derivatives of phosphorus, arsenic, and antimony are superseded for Chemical Society usage by the recent American-British agreement (see p. 5122). Ed.]

Rule 35 Compounds derived from hydroxylamine by replacement of the hydrogen of the hydroxyl group will be regarded as alkoxy-derivatives; those in which an atom of hydrogen of the NH_{2} group is replaced, as alkylhydroxylamines. Oximes will be named by adding the suffix oxime to the name of the corresponding aldehyde, ketone, or quinone.

Examples: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O} \cdot \mathrm{NH}_{2}$ ethoxyamine; $\mathrm{C}_{2} \mathrm{H}_{5} \cdot \mathrm{NH} \cdot \mathrm{OH}$ ethylhydroxylamine.
[A space is left before the word oxime. Ed.]
Rule 36 The generic term urea is retained; it will be used as a suffix for the alkyl and acyl derivatives of urea.

Examples : butylurea $\mathrm{C}_{4} \mathrm{H}_{9} \cdot \mathrm{NH} \cdot \mathrm{CO} \cdot \mathrm{NH}_{2}$; butyrylurea $\mathrm{C}_{3} \mathrm{H}_{7} \cdot \mathrm{CO} \cdot \mathrm{NH} \cdot \mathrm{CO} \cdot \mathrm{NH}_{2}$.
The bivalent radical $-\mathrm{NH} \cdot \mathrm{CO} \cdot \mathrm{NH}^{-}$will be termed ureylene.
Rule 37 The generic name guanidine is retained.
Rule 38 The name carbylamine is retained.
[As isocyano is included in the list of radicals issued with the more recent rules, the term isocyanide can now hardly be considered out of order (cf. also rule 39). Ed.]

Rule 39 isoCyanic and isothiocyanic esters ($\mathrm{R} \cdot \mathrm{NCO}, \mathrm{R} \cdot \mathrm{NCS}$) will be named isocyanates and isothiocyanates.

Rule 40 The name cyanate is reserved for the true esters which on hydrolysis yield cyanic acid or its hydration products. The name sulphocyanate will be replaced by thiocyanate.

Rule 41 Nitro-derivatives: no change in present nomenclature.
Rule 42 Azo-derivatives: the forms azo, azoxy are retained.
Rule 43 (a) Diazonium compounds, $\left.\mathrm{R} \cdot \mathrm{N}_{\mathrm{N}}^{+}\right\} \mathrm{X}^{-}$, are named by addition of the suffix diazonium to the name of the parent substance (benzenediazonium chloride).
(b) Compounds having the same empirical formula but containing tervalent nitrogen will be named by replacing diazonium with diazo (benzenediazohydroxide).
[The name phenylazo for the radical $\mathrm{Ph} \cdot \mathrm{N}: \mathrm{N}-$ will be noted in extended examples (p. 5098). Ed.]
(c) Substances of the type $\mathrm{R} \cdot \mathrm{N}_{2} \cdot \mathrm{OM}$ will be named diazoates.
(d) Compounds in which the two nitrogen atoms are united to a single carbon atom will be designated by the prefix diazo (diazomethane, diazoacetic acid).
(e) The term diazoamino is retained; however, these compounds may also be regarded as derivatives of triazen.
(f) Derivatives of the substances $\mathrm{H}_{2} \mathrm{~N} \cdot \mathrm{NH} \cdot \mathrm{NH} \cdot \mathrm{NH}_{2}, \mathrm{HN}: \mathrm{N} \cdot \mathrm{NH} \cdot \mathrm{NH}_{2}, \mathrm{HN}: \mathrm{N} \cdot \mathrm{NH} \cdot \mathrm{N}: \mathrm{NH}$ will be named tetrazans, tetrazens, pentazdiens, etc.

Rule 44 Hydrazines are designated by the name of the alkyl radicals from which they are derived, followed by the suffix hydrazine. In cases where the amino-group of amides is replaced by the hydrazino-group, the suffix hydrazide will be used. Hydrazo-derivatives are regarded as derivatives of hydrazine.

Examples: $\mathrm{CH}_{3} \cdot \mathrm{NH} \cdot \mathrm{NH}_{2}$ methylhydrazine; $\mathrm{C}_{2} \mathrm{H}_{5} \cdot \mathrm{NH} \cdot \mathrm{NH} \cdot \mathrm{C}_{3} \mathrm{H}_{7}$ 1-ethyl-2-propylhydrazine; $\mathrm{C}_{3} \mathrm{H}_{7} \cdot \mathrm{CO} \cdot \mathrm{NH} \cdot \mathrm{NH}_{2}$ butyrohydrazide or propanecarbohydrazide.
[However, compare note to rule 32. Ed.]
Rule 45 Hydrazones and semicarbazones are named like the oximes. The term osazone is retained.

Rule 46 The name quinone is retained.
[This is used as a suffix, to be added to the name of the hydrocarbon, except for the trivial names benzoquinone, naphthaquinone, anthraquinone, and phenanthraquinone. Ed.]

Rule 47 Sulphonic and sulphinic acids will be designated by adding the suffixes sulphonic and sulphinic to the name of the hydrocarbon.

The analogous acids of selenium and tellurium will bear the names alkane-selenonic and -seleninic acids; alkane-telluronic and -tellurinic acids.
[See footnote 9 (p. 5086). Ed.]
Rule 48 Organometallic compounds will be designated by the names of the organic radicals united to the metal which they contain, followed by the name of the metal.

Examples: dimethylzinc, tetraethyl-lead, methylmagnesium chloride.
However, if the metal is united in a complex manner it may be considered as a substituent.
Example: $\mathrm{ClHg}^{\circ} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CO}_{2} \mathrm{H}$ chloromercuribenzoic acid.
Rule 49 (a, I) Cyclic hydrocarbons with aliphatic side-chains are to be named according to one of the two following methods: (α) The radical names denoting the side-chain are prefixed to the name of the cyclic hydrocarbon. (β) The cyclic hydrocarbon residue, if it can be named as a radical, is considered a substituent of the aliphatic chain.

Naming according to (α) is in general preferable when the side-chain is short or when several side-chains are present. Naming according to (β) is more convenient when the side-chain is long, and particularly when the cyclic hydrocarbon residue is not at this end of the chain.

Examples: (α) $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{C}_{2} \mathrm{H}_{5}$ ethylbenzene; $\mathrm{CH}_{3} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{C}_{2} \mathrm{H}_{5}$ ethylmethylbenzene;
$\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{CH}: \mathrm{CH}_{2}$ vinylnaphthalene.
(β) $\mathrm{CH}_{3} \cdot \mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \cdot\left[\mathrm{CH}_{2}\right]_{5} \cdot \mathrm{CH}_{3}$ 2-phenyloctane; $p-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}\left(\mathrm{CH}_{3}\right) \cdot \mathrm{CH}\left(\mathrm{CH}_{3}\right) \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{CH}_{3}$ 3-methyl-2-p-isopropylphenylheptane.

For naming cyclic hydrocarbons with side-chains according to (α), it is advisable in many cases to use the common names of simple aromatic hydrocarbons.

Examples: $\quad o-\mathrm{CH}_{3} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{C}_{2} \mathrm{H}_{5} \quad o$-ethyltoluene; 1:3:2-($\left.\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \cdot \mathrm{CH}^{2} \cdot \mathrm{CH}_{2} \quad$ 2-vinyl-mxylene; 1:2:4- $\mathrm{CH}_{3} \cdot \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \cdot \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ 2-ethyl- p-cymene.
(a, II) When several cyclic hydrocarbon residues are united by an aliphatic chain the name of the compound will be derived from that of the aliphatic hydrocarbon, provided radical names are available for the cyclic hydrocarbon residue.

Examples: $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{5}$ diphenylmethane; $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CH}_{3}$ 1:2-diphenylpentane.

If this is not the case, or if the possibility of using a convenient radical name makes it desirable, the name of the compound will be derived from that of one of the cyclic hydrocarbons, on the principle of substitution.

Examples: 2- $\mathrm{C}_{11} \mathrm{H}_{9} \cdot \mathrm{CH}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{5}$ 2-benzylanthracene (better than phenyl-2-anthrylmethane); $\mathrm{C}_{10} \mathrm{H}_{9} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{5}$ 1-2'-phenethylpyrene.
(b) When the cyclic hydrocarbons treated of in rule $49 a$ carry functions which can be expressed only by a prefix, the same possibilities for names exist as those indicated in rule $49 a$.

Examples: $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CHCl} \cdot \mathrm{CH}_{2} \mathrm{Cl} 1$: 2-dichloro-1-phenylethane or $1^{\prime}: 2^{\prime}$-dichloroethylbenzene; $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}\left(\mathrm{CH}_{3}\right) \cdot \mathrm{CH}_{2} \mathrm{Cl}$ 1-chloro-2-methyl-3-phenylpropane ; $p-\mathrm{Cl}^{-} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl} p$-chloro(2 '-chloroethyl)benzene or 1-chloro-2- p-chlorophenylethane.

For naming derivatives of monocyclic hydrocarbons which have common names, it will be of advantage to employ these names.

Examples: $p-\mathrm{Cl}^{2} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}_{3} \quad p$-chlorotoluene (1-chloro-4-methylbenzene); p - $\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}$ 4: ω-dichlorotoluene (1-chloro-4-chloromethylbenzene, 4 -chlorobenzyl chloride); 1:2:4$\mathrm{CH}_{3} \cdot \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NO}_{2}\right) \cdot \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ 2-nitro-p-cymene (1-methyl-2-nitro-4-isopropylbenzene).
[The original text of this rule has been amended, above, as required by the more recent rules and in the light of the Society's customs. Of the many gaps in this rule, perhaps the most obvious is the absence of the generally accepted principle that a smaller radical is considered as a substituent into a larger unit. Ed.]

Rule 50 If it is necessary to avoid ambiguity, the names of complex radicals will be placed in parentheses. Examples: (dimethylphenyl)amine $=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \cdot \mathrm{NH}_{2}$; dimethylphenylamine $=\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$.
[The intention of the rule is clear, although the examples are unfortunate because the extended examples published more recently include the radicals xylidino and anilino so that the names become xylidine and dimethylaniline. Current customs of the Society, as set out in J., 1950, 3705, may be considered as amplification of the rule. Ed.]

V. Complex Functions

Rule 51 For compounds of complex function, that is to say, for compounds possessing different functions, only one kind of function (the principal function) will be expressed by the ending of the name. The other functions will be designated by appropriate prefixes.
[The need for this rule is evident when it is taken in conjunction with rule 64 which prescribes priority for the lowest number to the suffix. If there were two suffixes, as for instance, pentanolone for $\mathrm{CH}_{3} \cdot \mathrm{CH}(\mathrm{OH}) \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}^{\circ} \cdot \mathrm{CH}_{3}$, the numbering would not be prescribed by rule 64. (Rule 53 shows that the rule should be applied even when no ambiguity of numbering arises, e.g., for heterocycles, steroids, triterpenes, etc.) However, rule 51 is incomplete as it does not state which of two or more different functions is to be named as a suffix, e.g., whether the above substance is to be a hydroxypentanone or an oxopentanol. After a study of general practice, Chemical Abstracts (1945, 39, 5876, para. 68) prescribed the following order of precedence for citation as suffix and therefore for lowest available number: 'onium compounds, acid (carboxylic, arsonic, sulphonic, stibonic, others), acid halide, amide, imide, amidine, aldehyde, nitrile, isocyanide, ketone, alcohol, phenol, thiol, amine, imine, ether, sulphide (and sulphoxide and sulphone). (The above example is therefore 4 -hydroxypentan-2-one.) Although not complete, this list serves for most cases.

These principles should be used in Chemical Society publications unless they obscure the exposition.
[Unsaturated groupings are not considered to be functions for the purpose of rule 51 and 64 ; indeed, if this were not so, the names alkenyne and alkadienyne of rule 10 would be incorrect. Thus names such as pent-3-en-2-ol are in order.
[Rule 51 is extended in practice in the sense that if a substance contains a function which can be expressed as a suffix then it shall be so expressed; e.g., pentan-2-one, not 2-oxopentane; thiophen-3-carboxylic acid, not 3 -carboxythiophen. This is, at the least, in line with Rule 18. Ed.]

Rule 52 The following prefixes and suffixes will be used for designating the functions.

Function	Prefix	Suffix
Acid and derivatives	carboxy	carboxylic, carbonyl, carbonamide, etc., or oic, oyl, etc.
Alcohol	hydroxy	ol
Aldehyde	oxo	al
	aldo, in generic sense, or formyl, for CHO	
Amine	amino	amine
Azo-derivative	azo	
Azoxy-derivative	azoxy	
Carbonitrile (nitrile)	cyano	carbonitrile or nitrile
Double bond		ene
Ether	alkoxy	
Ethylene oxide, etc.	epoxy	
Halide	halogeno	
Hydrazine	hydrazino	hydrazine
Ketone	oxo	one
	keto, in generic sense	
Mercaptan	mercapto	thiol
Nitro-derivative	nitro	
Nitroso-derivative	nitroso	
Quinquevalent nitrogen		onium, inium
Sulphide	alkylthio	
Sulphinic derivative	sulphino	sulphinic
Sulphone	sulphonyl	
Sulphonic derivative	sulpho	sulphonic
Sulphoxide	sulphinyl	
Triple bond		yne
Urea	ureido	urea

[Aldo and keto were " restricted to the generic sense" by the more recent list of radical names. Hitherto, in Chemical Society practice, keto has been used as a prefix. This will now cease and the prefix used for doubly linked oxygen will be oxo. Practical advantages of this are exemplified by the following : (a) If, in a N-heterocyclic compound, a CO group is adjacent to nitrogen its rôle is that of an amide rather than of a ketone; thus a name such as $1: 2: 3: 4$-tetrahydro-2-oxoquinoline is better than $1: 2: 3: 4$-tetrahydro-2-ketoquinoline. (b) It is very convenient to be able to name a side-chain terminating in an aldehyde group as an oxoalkyl radical, e.g., 2 -4'-oxobutylquinoline. Further, a keto-group is CO, i.e., includes the carbon atom; when conversion of CH_{2} into CO is designated by a prefix, it is more in keeping with the principle of substitutive nomenclature that this should be done by means of oxo, i.e., doubly linked oxygen replacing hydrogen, than by means of keto.
[The change of alkanethiol for the substance (rule 22) into alkylthio for the radical prefix should be noted. Ed.]

Rule 53 The names of derivatives of fundamental heterocyclic substances will be formed according to the preceding rules.

VI. Radicals

Rule 54.1 Univalent radicals derived from saturated aliphatic hydrocarbons (alkanes) will have the generic name alkyls. Those derived from normal alkanes by removal of hydrogen from a terminal carbon atom will be named by replacing the ending ane of the hydrocarbon by $y l$. The carbon atom with the free valency is numbered as 1. As a class these radicals will be called normal, or straight-chain, alkyls.

Examples: butyl, pentyl, hexyl, nonyl, undecyl, hexadecyl.
[Amyl is not recognised, and pentyl is to be used in its place. The absence of the n-prefix was deliberate. Ed.]

Rule 54.2 Radicals having the structure $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot\left[\mathrm{CH}_{2}\right]_{n}$ - (where n is $0,1,2$, or 3) will be named from the isomeric normal alkyls by prefixing iso. The generic name of these radicals will be isoalkyls.

Examples : isopropyl $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\quad$ isobutyl $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot \mathrm{CH}_{2}-$
[The recognition accorded in this recent rule and its extended examples (p. 5082) to the iso-radicals from isopropyl to isohexyl has various repercussions; cf. notes for rule 6. The extended examples make clear that this rule applies only to the unsubstituted radical, though this is not stated in the rule itself. Ed.]

Rule 54.3 Other univalent radicals derived from alkanes will be named as derivatives of the longest normal alkyl present, in the same way as the corresponding hydrocarbons in rule 6 , the carbon atom with the free valency being numbered as 1 .

$$
\begin{array}{rll}
\text { Examples: } & \text { 1-methylpentyl } & \mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}\left(\mathrm{CH}_{3}\right)- \\
& \text { 2-methylpentyl } & \mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}^{2}\left(\mathrm{CH}_{3}\right) \cdot \mathrm{CH}_{2}-
\end{array}
$$

However, the following unambiguous names for the following (unsubstituted) alkyl radicals, sanctioned by usage, are preferred to the systematic names:

> sec.-butyl $\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}\left(\mathrm{CH}_{3}\right)-\quad$ tert.-butyl $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\quad$ neopentyl $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C} \cdot \mathrm{CH}_{2}-$
> [Names such as 2-n-hexyl for $\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}\left(\mathrm{CH}_{3}\right)-$ are not sanctioned. Ed.]

Rule 54.4 Univalent radicals derived from cycloalkanes will be named by replacing the ending ane of the hydrocarbon name by $y l$, the carbon atom having the free valency being numbered as 1. The generic name of these radicals will be cycloalkyls.

Examples: cyclopropyl

cyclohexyl $\quad \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}-$
Rule 55.1 The names of univalent radicals derived from unsaturated aliphatic or alicyclic hydrocarbons will have the endings enyl, ynyl, dienyl, etc., the positions of the double and triple bonds being indicated where necessary. The carbon atom with the free valency will be numbered as 1 , except in those cases where the enumeration has previously been established.
Examples: ethynyl $\mathrm{CH}: \mathrm{C}^{-}$ but-2-enyl $\mathrm{CH}_{3} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CH}_{2}-$
buta-1 : 3-dienyl $\mathrm{CH}_{2}{ }^{\circ} \mathrm{CH} \cdot \mathrm{CH}: \mathrm{CH}^{-}$
2-methylallyl, preferred to methallyl
cyclopent-2-enyl $\mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CH}-$
2-methylallyl, preferred to methallyl $\mathrm{CH}_{2} \cdot \mathrm{C}\left(\mathrm{CH}_{3}\right) \cdot \mathrm{CH}_{2}-$

With aliphatic radicals the chain containing a maximum of unsaturated linkages will be taken as the fundamental chain, double bonds being given preference to triple bonds.

Example: 1-butylbut-2-enyl

The following names, sanctioned by usage, are preferred to the systematic names :
vinyl to ethenyl $\mathrm{CH}_{2}: \mathrm{CH}$ - allyl to prop-2-enyl $\mathrm{CH}_{2}: \mathrm{CH} \cdot \mathrm{CH}_{2}-$
isopropenyl (for unsubstituted radical only) to l-methylvinyl $\mathrm{CH}_{2} \cdot \mathrm{C}\left(\mathrm{CH}_{3}\right)-$
Trivial names of unsubstituted complex radicals of this class such as geranyl, neryl, linalyl, and phytyl are admitted.
[Names specified as "preferred" will be used in Chemical Society publications in this and other cases.
[The rule does not elucidate all the uncertainties inherent in the older rules 8-10. Ed.] 14 Y

Rule 56.1 Bivalent and tervalent radicals derived from univalent hydrocarbon radicals whose authorized names end in $y l$ by removal (where the structure permits) of one or two hydrogen atoms from the carbon atom having the free valency will be named by adding idene or idyne respectively to the name of the corresponding univalent radical. The carbon atom having the free valencies will be numbered as 1 , except in those cases where the enumeration has previously been established.

The name methylene is retained.

```
Examples: ethylidene
    \(\mathrm{CH}_{3} \cdot \mathrm{CH}=\)
    ethylidyne
    vinylidene
    isopropylidene (for unsubstituted
        \(\mathrm{CH}_{2} \cdot \mathrm{C}=\) (preferred to ethylidene)
        radical only)
    benzylidene (point of attach- \(\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}=\)
        ment \(=\alpha\) )
    benzylidyne
    \(\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{C} \equiv\)
```

Rule 56.2 Bivalent or tervalent radicals derived from univalent non-hydrocarbon radicals whose authorized names end in $y l$ by removal (where the structure permits) of one or two hydrogen atoms from the carbon atom having the free valency will be named by adding idene or idyne respectively to the name of the corresponding univalent radical. The carbon atom having the free valencies will be numbered as 1 except in those cases where the enumeration has previously been established.

Examples : acetonylidene $\mathrm{CH}_{3} \cdot \mathrm{CO} \cdot \mathrm{CH}=$ 4-piperidylidene $\mathrm{N}<\underset{\left[\mathrm{CH}_{2}\right]_{2}}{\left[\mathrm{CH}_{2}\right]_{2}}>\mathrm{C}=$
Rule 57.1 The names of bivalent radicals derived from normal alkanes by removal of a hydrogen atom from each of the two terminal carbon atoms of the chain will be ethylene, trimethylene, tetramethylene, etc.

The name propylene is retained for the radical $\mathrm{CH}_{3} \cdot \mathrm{CH} \cdot \mathrm{CH}_{2}-$.
Rule 57.2 Bivalent radicals similarly derived from normal alkenes, alkadienes, alkynes, etc., by removing a hydrogen atom from each of the terminal carbon atoms will be named by replacing the endings ene, diene, yne, etc., of the hydocarbon name by enylene, dienylene, ynylene, etc., the positions of the double and triple bonds being indicated where necessary.

The name vinylene as sanctioned by usage is preferred to ethenylene.
Examples: propenylene $-\mathrm{CH}_{2} \cdot \mathrm{CH}: \mathrm{CH}-\quad$ but-2-enylene $-\mathrm{CH}_{2} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CH}_{2}-$
Rule 57.3 Bivalent radicals derived from saturated or unsaturated alicyclic hydrocarbons by removing a hydrogen atom from each of two different carbon atoms of the ring will be named by replacing the endings ane, ene, diene, yne, etc., of the hydrocarbon name by ylene, enylene, dienylene, ynylene, etc., the positions of the double and triple bonds and of points of attachment being indicated. Preference in numbering is given to the points of attachment.

Examples: cyclopent-1:3-ylene, cyclohex-3-en-1 : 2-ylene, cyclohexa-2:5-dien-1:4-ylene, cyclohexa-3:5-dien-1 : 3-ylene.
[The last name exemplifies the assignment of lowest numbers to the points of attachment without regard to the sum of the numbers. Thus, $3+5+1+3=12$, whereas for the possible alternative, cyclohexa-1 : 3-dien-1 : 5-ylene, the sum of the numerals is 10 . Ed.]

Rule 58.1 The systematic names of radicals derived from carboxylic acids by removal of OH from all carboxyl groups will be formed by changing the ending carboxylic of the systematic name of the acids to carbonyl or, if the Geneva nomenclature is used, the ending oic to oyl. Where practicable, the latter names are to be preferred.

Examples : hexanoyl, preferred to 1-pentanecarbonyl $\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{4} \cdot \mathrm{CO}^{-}$ hexanedioyl, preferred to 1 : 4-butanedicarbonyl $-\mathrm{CO} \cdot\left[\mathrm{CH}_{2}\right]_{4} \cdot \mathrm{CO}^{-}$

Rule 58.2 The acid radicals derived from sulphonic and sulphinic acids and the like will be named by changing the ending $i c$ of the names of the latter to $y l$.

Examples: benzenesulphonyl $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{SO}_{2}-\quad$ benzenesulphinyl $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{SO}^{-}$
[See footnote 9 (p. 5086). Ed.]

Rule 58.3 Trivial names of radicals of carboxylic acids derived by removal of OH from all carboxyl groups will be formed from the accepted trivial names of the acids by changing the ending ic or oic to oyl (see also rule 58.5).

Examples : stearoyl from stearic acid piperonyloyl from piperonylic acid maloyl from malic acid maleoyl from maleic acid aspartoyl from aspartic acid $-\mathrm{CO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-}$ glutamoyl from glutamic acid $-\mathrm{CO}^{\cdot} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}(\mathrm{NH})_{2} \cdot \mathrm{CO}^{-}$
Exceptions are made, however, for the following radical names in general use, which remain unaltered : formyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, oxalyl, malonyl, succinyl, and glutaryl.
[The useful device for differentiating mono- from di-radicals of aspartic and glutamic acid should be noted (cf. extended examples to rule 58.5, p. 5089). Ed.]

Rule 58.4 The acid radicals of compounds which are named as amic acids (half amides of dibasic acids) will be named with the ending amoyl.

Examples : oxamoyl from oxamic acid
succinamoyl from succinamic acid
phenylcarbamoyl from phenylcarbamic acid $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NH} \cdot \mathrm{CO}^{-}$
phenylsulphamoyl from phenylsulphamic acid $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NH} \cdot \mathrm{SO}_{2}^{-}$
[Note the change in British nomenclature from phenylcarbamyl to phenylcarbamoyl. The radical $\mathrm{NH}_{2} \cdot \mathrm{CO}^{-}$, hitherto termed carbamyl, is now carbamoyl (p. 5089). Similar changes apply for sulphamoyl $\left(\mathrm{NH}_{2} \cdot \mathrm{SO}_{2}^{-}\right)$and the like. Ed.]

Rule 58.5 Radicals derived from amino-acids which have trivial names ending in ine by removal of OH from all $-\mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}_{2} \mathrm{H}$ and related groups will be named by replacing the ending ine with $y l$.

Examples: glycyl (from glycine), tyrosyl (from tyrosine), cystyl (from cystine).
The following names do not conform to this rule but are recommended : asparaginyl (from asparagine), glutaminyl (from glutamine), cysteinyl (from cysteine), tryptophyl (from tryptophan).

The corresponding radicals derived from aspartic acid and glutamic acid will be called aspartyl and glutamyl.

Rule 58.6 The names of amide radicals, $\mathrm{R} \cdot \mathrm{CO} \cdot \mathrm{NH}^{-}, \mathrm{R} \cdot \mathrm{SO}_{2} \cdot \mathrm{NH}^{-}$, etc., will be formed from the systematic or trivial names of the corresponding amides by changing the ending amide to amido.

Examples: acetamido, heptanamido, benzenesulphonamido.

Rule 58.7 The names of radicals derived from cyclic imides by removal of the H attached to imide-nitrogen will be formed from the systematic or trivial imide names by changing the ending imide to imido.

Examples: succinimido $\begin{aligned} & \mathrm{CH}_{2} \cdot \mathrm{CO} \\ & \mathrm{CH}_{2} \cdot \mathrm{CO}\end{aligned}>\mathrm{N}^{-}$phthalimido ${ }_{0}-\mathrm{C}_{6} \mathrm{H}_{4}<{ }_{\mathrm{CO}}^{\mathrm{CO}}>\mathrm{N}^{-}$
[This rule confines the imido termination to cyclic compounds. See note to rule 32. Ed.]

Rule 58.8 Radicals derived from imidic acids by removal of OH from all $\mathrm{C}(: \mathrm{NH}) \cdot \mathrm{OH}$ groups will be formed from the systematic or trivial names of the corresponding imidic acids by changing imidic acid to imidoyl.

Examples : acetimidoyl $\mathrm{CH}_{3} \cdot \mathrm{C}(: \mathrm{NH})^{-} \quad$ benzimidoyl $\quad \mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{C}(: \mathrm{NH})^{-}$
[This useful nomenclature has already been adopted in the Journal (cf. J., 1950, 3702). Ed.]

Rule 58.9 Radicals having the formula $R H N^{-}$and $R^{\prime} N^{-}$-, derived from bases whose names end in ine, will (unless the nitrogen atom is a ring member in which case Rule 60 is applied) be named by changing the ending ine to ino.

Examples: dimethylamino, anilino.
Guanidino, $\mathrm{H}_{2} \mathrm{~N} \cdot \mathrm{C}(\cdot \mathrm{NH}) \cdot \mathrm{NH}^{-}$, and benzidino, $p-\mathrm{H}_{2} \mathrm{~N}^{\circ} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}^{-}$, are names sanctioned by usage for univalent radicals of polyamines.

Rule 59.1 Univalent radicals derived from aromatic hydrocarbons with names ending in ene by removal of a hydrogen atom from an aromatic or alicyclic ring will in principle be named by changing the ending ene of the names of the hydrocarbons to enyl.

Examples: chrysenyl, pyrenyl, indenyl, fluorenyl, acenaphthenyl.
However, the radicals $\mathrm{C}_{6} \mathrm{H}_{5}-$ and $\mathrm{C}_{6} \mathrm{H}_{5}{ }^{\circ} \mathrm{C}_{6} \mathrm{H}_{4}-$ will continue to be named phenyl and diphenylyl. Moreover, certain abbreviations sanctioned by usage are authorized; as, tolyl, naphthyl, anthryl, phenanthryl.
[The I.U.P.A.C. text has biphenylyl, but see note to rule 67. Ed.]
Rule 60.1 Univalent radicals derived from heterocyclic compounds by removal of hydrogen from a ring will in principle be named by adding $y l$ to the names of the parent compounds (with elision of final e if present).

Examples: indolyl from indole triazolyl from triazole pyrrolinyl from pyrroline triazinyl from triazine
However, certain abbreviations sanctioned by usage and not causing ambiguity are authorized, namely, furyl, pyridyl, piperidyl, quinolyl, and isoquinolyl. The radical of thiophen will continue to be named thienyl.

The names piperidino and morpholino are preferred to 1 -piperidyl and 4-morpholinyl because of usage.
[The principle that in cyclic compounds the termination ino denotes $>\mathrm{N}-$ has been used widely and with success in the Journal, e.g., pyridino, triazino, pyrrolidino. To conform with the rule this must however now be restricted to piperidino and morpholino, and the other names become, e.g., 1-pyridyl, 1-pyrrolidinyl. Ed.]

Rule 61.1 Radicals formed by removal of a hydrogen atom from a side chain of a cyclic compound will be regarded as substituted aliphatic radicals.

However, the radicals $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}_{2}-, \mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}-, \mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}: \mathrm{CH}-, \mathrm{C}_{6} \mathrm{H}_{5} \cdot{ }^{\circ} \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CH}_{2}-$, $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O} \cdot \mathrm{CH}_{2}-$, and $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S} \cdot \mathrm{CH}_{2}-$ will be named benzyl, phenethyl, styryl, cinnamyl, furfuryl (preferred to 2 -furylmethyl), and thenyl, respectively, the point of attachment being indicated by α.
[In accordance with this rule, phenethyl will now be used in Chemical Society publications. Ed.]

Rule 62.1 Bivalent radicals derived from aromatic compounds by removal of a hydrogen atom from each of two different carbon atoms of the ring are named by changing the ending $y l$ of the univalent radical name to ylene.

Examples: phenylene, naphthylene, anthrylene, phenanthrylene, acenaphthenylene.
Rule 63 The order in which prefixes or radicals are stated (alphabetical order or conventional order) remains optional.
[The alphabetical order is used in Chemical Society publications; cf. $J ., 1950,3699$. Ed.]

VII. Numbering

Rule 64 In aliphatic compounds the carbon atoms of the fundamental chain will be numbered from one end to the other with the use of arabic numerals. In case of ambiguity the lowest numbers will be given (1) to the principal function, (2) to double bonds, (3) to triple bonds, (4) to atoms or radicals designated by prefixes. The expression " lowest numbers" signifies
those that include the lowest individual number or numbers. Thus 1:3:5 is lower than $2: 4: 6 ; 1: 5: 5$ lower than $2: 6: 6 ; 1: 2: 5$ lower than $1: 4: 5 ; 1: 1: 3: 4$ lower than 1:2:4:4.
[The " principal function," for the purpose of this rule, is that which is expressed by a suffix-there can be only one such. In this connection the notes to rules 17 and 51 should be consulted. If there is no suffix, then criteria 2,3 , and 4 should be applied, as necessary, in that order. If still no decision is reached, proceed to rule 66.
[Rule 64 is stated to apply to aliphatic compounds. In absence of further specific rules it is applied to cycloalkanes, cycloalkenes, etc., and, with omission of criterion 2, to aromatic and heterocyclic compounds so far as the fixity of their numbering permits.
[The second part of rule 64 is not comprehensive; this has been discussed by Patterson (loc. cit.), Mitchell (op. cit.), and others. Ed.]

Rule 65 Positions in a side chain will be designated by numerals or letters, starting from the point of attachment. The numerals or letters will be in parentheses with the name of the chain.
[For typographical conventions of the Society see J., 1950, 3705. Ed.]
Rule 66 In case of ambiguity in the numbering of atoms or radicals designated by prefixes, the order will be that chosen for the prefixes before the name of the fundamental compound or side chain of which they are substituents.
[This applies only if a decision is not reached by rule 64 (q.v.). It requires, for example, 1:3-dichloro-5-ethylbenzene but 1-ethyl-3:5-difluorobenzene when the alphabetical order is used. Ed.]

Rule 67 The prefixes di, tri, tetra, etc., will be used before simple expressions (for example, diethylbutanetriol) and the prefixes bis, tris, tetrakis, etc., before complex expressions.

Examples: bismethylaminopropane $\mathrm{CH}_{3} \cdot \mathrm{NH} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{NH} \cdot \mathrm{CH}_{3}$; bisdimethylaminoethane $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$.

The prefix $b i$ will be used only to denote the doubling of a radical or compound; for example, biphenyl.
[Di , not bi, is used in Chemical Society nomenclature, where also only radicals are doubled. $\mathrm{C}_{6} \mathrm{H}_{5} \cdot{ }^{\circ} \mathrm{C}_{6} \mathrm{H}_{5}$ is diphenyl; $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{2}$ is di-2-pyridyl, etc. $p-\mathrm{CO}_{2} \mathrm{H}^{\circ} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CO}_{2} \mathrm{H}-p$ is di-phenyl-4:4'-dicarboxylic acid (doubling of a radical), and not 4:4'-dibenzoic acid (doubling of a molecule). This British practice remains current. Ed.]

Rule 68 A catalogue of cyclic systems, with their numberings according both to the existing system and to that of Mr. Patterson, is in preparation under the auspices of the National Research Council of the United States and of the American Chemical Society.
[This is not really a rule. It refers to "The Ring Index, a List of Ring Systems used in Organic Chemistry," by Patterson and Capell, Reinhold Publ. Corpn., 1940, American Chemical Society Monograph No. 84. This system of nomenclature has been discussed at I.U.C. meetings but has not been officially adopted. It has been widely but not universally used in Chemical Society publications; it is particularly valuable in complex cases. Ed.]
(?Rule 69) In order to avoid all confusion the Commission recommends placing a scheme of numbering at the head of each article.

Rule 70.1 The name of the compound SiH_{4} will be silane. Compounds having the general formula $\mathrm{H}_{3} \mathrm{Si} \cdot\left[\mathrm{SiH}_{2}\right]_{n} \cdot \mathrm{SiH}_{3}$ will be called disilane, trisilane, etc., according to the number of silicon atoms present. Compounds of the general formula $\mathrm{Si}_{n} \mathrm{H}_{2 n+2}$ will have the generic name silanes.

Example: Trisilane $\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{SiH}_{2} \cdot \mathrm{SiH}_{3}$
Rule 70.2 Compounds having the formula $\mathrm{H}_{3} \mathrm{Si} \cdot\left[\mathrm{NH} \cdot \mathrm{SiH}_{2}\right]_{n} \cdot \mathrm{NH} \cdot \mathrm{SiH}_{3}$ will be called disilazane, trisilazane, etc., according to the number of silicon atoms present; they will have the generic name silazanes.

Example: Trisilazane $\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{NH} \cdot \mathrm{SiH}_{2} \cdot \mathrm{NH} \cdot \mathrm{SiH}_{3}$

Rule 70.3 Compounds having the formula $\mathrm{H}_{3} \mathrm{Si} \cdot\left[\mathrm{S} \cdot \mathrm{SiH}_{2}\right]_{n} \cdot \mathrm{~S} \cdot \mathrm{SiH}_{3}$ will be called disilthiane, trisilthiane, etc., according to the number of silicon atoms present; they will have the generic name silthianes.

Example: Trisilthiane $\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{S} \cdot \mathrm{SiH}_{2} \cdot \mathrm{~S} \cdot \mathrm{SiH}_{3}$
Rule 70.4 Compounds having the formula $\mathrm{H}_{3} \mathrm{Si} \cdot\left[\mathrm{O} \cdot \mathrm{SiH}_{2}\right]_{n} \cdot \mathrm{O} \cdot \mathrm{SiH}_{3}$ will be called disiloxane, trisiloxane, etc., according to the number of silicon atoms present; they will have the generic name siloxanes.

Example: Trisiloxane $\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{O} \cdot \mathrm{SiH}_{2} \cdot \mathrm{O} \cdot \mathrm{SiH}_{3}$
Rule 70.5 For designating the positions of substituents on compounds named as silanes, silazanes, silthianes, and siloxanes, each member of the fundamental chain will be numbered from one terminal silicon atom to the other. When two or more possibilities for numbering occur, the same principles will be followed as for carbon compounds.

$$
\begin{aligned}
\text { Examples: } & \text { 1-Butyl-2: 3-dichloro-2-pentyltrisilane } \mathrm{Cl}^{\mathrm{Cl}} \cdot \mathrm{SiH}_{2} \cdot \mathrm{SiCl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{11}\right) \cdot \mathrm{SiH}_{2} \cdot \mathrm{C}_{4} \mathrm{H}_{9} \\
& \text { 2-Methyl-3-pentyloxytrisilazane } \mathrm{SiH}_{3} \cdot \mathrm{~N}\left(\mathrm{CH}_{3}\right) \cdot \mathrm{SiH}_{3}\left(\mathrm{OC}_{5} \mathrm{H}_{11}\right) \cdot \mathrm{NH} \cdot \mathrm{SiH}_{3} \\
& \text { 1-Methoxytrisiloxane } \quad \mathrm{CH}_{3} \mathrm{O} \cdot \mathrm{SiH}_{2} \cdot \mathrm{O} \cdot \mathrm{SiH}_{2} \cdot \mathrm{O} \cdot \mathrm{SiH}_{3}
\end{aligned}
$$

Rule 70.6 The following names of radicals containing silicon are adopted; these illustrate the principles on which any further radical names should be formed.

silyl	$\mathrm{H}_{3} \mathrm{Si}-$	siloxy	$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{O}^{-}$
silylene	$\mathrm{H}_{2} \mathrm{Si}=$	silylthio	$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{S}^{-}$
silylidyne	$\mathrm{HSi} \equiv$	silylamino	$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{NH}^{-}$
disilanyl	$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{SiH}_{2}-$	disilanoxy	$\mathrm{H}_{3} \mathrm{~S} \cdot \mathrm{SiH}_{2} \cdot \mathrm{O}^{-}$
trisilanyl	$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{SiH}_{2} \cdot \mathrm{SiH}_{2}-$	disilanylthio	$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{SiH}_{2} \cdot \mathrm{~S}^{-}$
disilanylene	$-\mathrm{SiH}_{2} \cdot \mathrm{SiH}_{2}-$	disilanylamino	$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{SiH}_{2} \cdot \mathrm{NH}^{-}$
trisilanylene	$-\mathrm{SiH}_{2} \cdot \mathrm{SiH}_{2} \cdot \mathrm{SiH}_{2}-$	disiloxanoxy	$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{O}^{-} \cdot \mathrm{SiH}_{2} \cdot \mathrm{O}^{-}$
	disiloxanylthio	$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{O}^{-} \cdot \mathrm{SiH}_{2} \cdot \mathrm{~S}^{-}$	
cyclohexasilanyl	$\mathrm{SiH}_{2} \cdot \mathrm{SiH}_{2} \cdot \mathrm{SiH}^{-}$	disiloxanylamino	$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{O}^{-} \cdot \mathrm{SiH}_{2} \cdot \mathrm{NH}^{-}$
disiloxanyl	$\mathrm{SiH}_{2} \cdot \mathrm{SiH}_{2} \cdot \mathrm{SiH}_{2}$	disilthianoxy	$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{S} \cdot \mathrm{SiH}_{2} \cdot \mathrm{O}^{-}$
disilthianyl	$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{O}_{2} \cdot \mathrm{SiH}_{2}^{-}$	disilthianylthio	$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{S} \cdot \mathrm{SiH}_{2} \cdot \mathrm{~S}^{-}$
disilazanyl	$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{S} \cdot \mathrm{SiH}_{2}^{-}$	disilazanoxy	$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{NH}^{-} \cdot \mathrm{SiH}_{2} \cdot \mathrm{O}^{-}$
	$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{NH} \cdot \mathrm{SiH}_{2}^{-}$	disilazanylamino	$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{NH} \cdot \mathrm{SiH}_{2} \cdot \mathrm{NH}^{-}$

Compound radical names may be formed in the usual manner.
Examples:

Silyldisilanyl	$\left(\mathrm{H}_{3} \mathrm{Si}_{2} \mathrm{SiH}^{-}\right.$
Disilyldisilanyl	$\left(\mathrm{H}_{3} \mathrm{Si}_{3} \mathrm{Si}^{-}\right.$
Triphenylsilyl	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Si}^{-}$

[In compound radical names the $y l$ is elided before $o x y$, but not before amino, etc. This follows custom for methoxy to butoxy, but the correct names from pentyloxy onwards retain the $y l$ (cf. footnote 42, p. 5097). Ed.]

Rule 70.7 Open-chain compounds which have the requirements for more than one of the structures as defined in rules 70.1-4, will be named, if possible, in terms of the silane, silazane, silthiane, or siloxane containing the largest number of silicon atoms.

$$
\begin{aligned}
\text { Examples: : } & \text { 3-Siloxytrisilthiane } & \begin{array}{c}
\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{~S} \cdot \mathrm{SiH} \cdot \mathrm{~S} \cdot \mathrm{SiH}_{3} \\
\\
\\
\\
\text { 1-Siloxy-3-(disilthianoxy)trisilthiane }
\end{array} \begin{array}{r}
\mathrm{O} \cdot \mathrm{SiH}_{3} \mathrm{Si} \cdot \mathrm{~S} \cdot \mathrm{SiH} \cdot \mathrm{~S} \cdot \mathrm{SiH}_{2} \cdot \mathrm{O} \cdot \mathrm{SiH}_{3} \\
\mathrm{O} \cdot \mathrm{SiH}_{2} \cdot \mathrm{~S} \cdot \mathrm{SiH}_{3}
\end{array}
\end{aligned}
$$

[The second example depends on the fact that all the units $\cdot \mathrm{Si} \cdot \mathrm{X} \cdot$ in the fundamental chain must be the same; the chain in this example containing the largest total number of silicon atoms is $\mathrm{Si} \cdot \mathrm{O} \cdot \mathrm{S} \cdot \mathrm{S} \cdot \mathrm{Si} \cdot \mathrm{O} \cdot \mathrm{Si} \cdot \mathrm{S} \cdot \mathrm{Si}$, but the mixed $\mathrm{Si} \cdot \mathrm{S} \cdot \mathrm{Si} \cdot \mathrm{O}$ chain does not afford a basis admissible for the prescribed nomenclature. Ed.]

Rule 70.8 When there is a choice between two parent compounds possessing the same number of silicon atoms, the order of precedence shall be siloxanes, silthianes, silazanes, and silanes.

Examples: 1-Silylthiodisiloxane
1-Silylaminodisilthiane
1-Phenyl-3-silyldisiloxane

$$
\begin{aligned}
& \mathrm{SiH}_{3} \cdot \mathrm{O} \cdot \mathrm{SiH}_{2} \cdot \mathrm{~S} \cdot \mathrm{SiH}_{3} \\
& \mathrm{SiH}_{3} \cdot \mathrm{~S} \cdot \mathrm{SiH}_{2} \cdot \mathrm{NH}^{2} \cdot \mathrm{SiH}_{3} \\
& \mathrm{SiH}_{3} \cdot \mathrm{SiH}_{2} \cdot \mathrm{O} \cdot \mathrm{SiH}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{5}
\end{aligned}
$$

[The numbering in the third example is based on rule 66 plus the alphabetical order of prefixes (rule 63). The disiloxane chain could have been numbered

$$
\mathrm{SiH}_{3}-\stackrel{3}{\mathrm{SiH}_{2}} \cdot \stackrel{2}{\mathrm{O}} \cdot \stackrel{1}{\mathrm{SiH}_{2}}-\mathrm{C}_{6} \mathrm{H}_{5} \quad \text { or } \quad \mathrm{SiH}_{2}-\stackrel{1}{\mathrm{~S}} \mathrm{SiH}_{2} \cdot \stackrel{2}{\mathrm{O}} \cdot \stackrel{3}{\mathrm{SiH}_{2}}-\mathrm{C}_{6} \mathrm{H}_{5}
$$

In the version printed, the former was used because the prefix phenyl precedes silyl alphabetically. Ed.]

Rule 70.9 Cyclic silicon compounds having the formula [$\left.\mathrm{SiH}_{2}\right]_{n}$ will be called cyclotrisilane, cyclotetrasilane, etc., according to the number of members in the ring; they will have the generic name cyclosilanes.

Example : cycloTrisilane $\mathrm{SiH}_{2} \cdot \mathrm{SiH}_{2} \cdot \mathrm{SiH}_{2}$
Rule 70.10 Cyclic compounds having the formula $\left[\mathrm{SiH}_{2} \cdot \mathrm{NH}\right]_{n}$ will be called cyclodisilazane, cyclotrisilazane, etc., according to the number of silicon atoms in the ring. They will have the generic name cyclosilazanes.

Example: cycloTrisilazane $\mathrm{HN} \cdot \mathrm{SiH}_{2} \cdot \mathrm{NH} \cdot \mathrm{SiH}_{2} \cdot \mathrm{NH} \cdot \mathrm{SiH}_{2}$
Rule 70.11 Cyclic compounds having the formula $\left[\mathrm{SiH}_{2} \cdot \mathrm{~S}\right]_{n}$ will have the generic name cyclosilthianes and will be named similarly to the cyclosilazanes.

Example : cycloTrisilthiane

Rule 70.12 Cyclic compounds having the formula $\left[\mathrm{SiH}_{2} \cdot \mathrm{O}\right]_{n}$ will have the generic name cyclosiloxanes and will be named similarly to the cyclosilazanes.

Example : cycloTrisiloxane $\mathrm{O} \cdot \mathrm{SiH}_{2} \cdot \mathrm{O} \cdot \mathrm{SiH}_{2} \cdot \mathrm{O} \cdot \mathrm{SiH}_{2}$
Rule 70.13 cycloSilanes, cyclosilazanes, cyclosilthianes, and cyclosiloxanes will be numbered in the same way as carbon compounds of similar nature.

Examples: 2-Methoxycyclotrisilazane
2-Methoxycyclotrisilthiane
2-Methoxycyclotrisiloxane

[The examples show that $\mathrm{O}, \mathrm{S}, \mathrm{N}$ in the ring take precedence over Si for the number l . Permanence of this will depend on discussion of the oxa-aza nomenclature now in progress at I.U.P.A.C. Ed.]

Rule 70.14 Polycyclic siloxanes (polycyclic compounds whose members consist entirely of alternating silicon and oxygen atoms) will be named as bicyclosiloxanes, tricyclosiloxanes, etc., or as spirosiloxanes, and will be numbered according to methods in use for carbon compounds of similar nature. Polycyclic silthianes, silazanes, and silanes will be treated similarly.

Examples:

3:3:5:5:9:9-Hexamethyl-1:7-
diphenylbicyclo[5:3:1]pentasiloxane

Tetramethyltricyclo[3:3:1:13:7]tetrasiloxane

Decamethylspiro[5:7]hexasiloxane

Rule 70.15 * The names of compounds containing silicon atoms as hetero-members (with or without other hetero-members) but not classifiable as (linear or cyclic) silanes, silazanes, silthianes, or siloxanes will be derived with the aid of the oxa-aza convention.

Examples:
2:2:4:4:6:6-Hexamethyl-2:4:6-trisilaheptane
2:4:6:8-Tetraoxa-5-carbanonasilane

Octaphenyloxacyclopentasilane
 $\mathrm{SiH}_{3} \cdot \mathrm{O} \cdot \mathrm{SiH}_{2} \cdot \mathrm{O} \cdot \mathrm{CH}_{2} \cdot \mathrm{O} \cdot \mathrm{SiH}_{2} \cdot \mathrm{O} \cdot \mathrm{SiH}_{3}$

Rule 70.16 Hydroxy-derivatives in which the hydroxyl groups are attached to a silicon atom will be named by adding the suffixes ol, diol, triol, etc., to the name of the parent compound.

Examples: | Silanol | $\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{OH}$ | |
| :--- | :--- | :--- |
| | Silanediol | $\mathrm{H}_{2} \mathrm{Si}(\mathrm{OH})_{2}$ |
| | Silanetriol | $\mathrm{HSi}(\mathrm{OH})_{3}$ |
| | Disilanehexol | $(\mathrm{HO})_{3} \mathrm{Si} \cdot \mathrm{Si}(\mathrm{OH})_{3}$ |

Disiloxanol
cycloHexasilanol

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{O} \cdot \mathrm{SiH}_{2} \cdot \mathrm{OH} \\
& \mathrm{SiH}_{2} \cdot \mathrm{SiH}_{2} \cdot \mathrm{SiH}_{1} \cdot \mathrm{OH} \\
& \mathrm{SiH}^{1} \cdot \mathrm{SiH} \cdot \mathrm{SiH}
\end{aligned}
$$

Polyhydroxy-derivatives in which each hydroxyl group is attached to a silicon atom will be named wherever possible in accordance with the principle of treating like things alike.

Example: 1:1:3:5:5-Pentamethyltrisiloxane-1:3:5-triol

Otherwise they shall be named in accordance with the principle of the largest parent compound.

Example: 2-Hydroxysilyltetrasilane-1: 4-diol

Rule 70.17 Substituents other than hydroxyl groups (functional atoms or groups and hydrocarbon radicals) attached to silicon will be expressed by appropriate prefixes or suffixes.

Examples: Ethyldisilane
Hexachlorodisiloxane
Dibutyldichlorosilane
Silylamine
Silanediamine
Silanetriamine
N-Methylsilylamine
$N N$-Dimethylsilylamine
$N N^{\prime}$-Dimethylsilanediamine
$N N^{\prime} N^{\prime \prime}$-Trimethylsilanetriamine
Acetoxytrimethylsilane
Diacetoxydimethylsilane
$\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{SiH}_{2} \cdot \mathrm{SiH}_{3}$
$\mathrm{Cl}_{3} \mathrm{Si} \cdot \mathrm{O} \cdot \mathrm{SiCl}_{3}$
$\left(\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}\right)_{2} \mathrm{SiCl}_{2}$
$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{NH}_{2}$
$\mathrm{H}_{2} \mathrm{Si}\left(\mathrm{NH}_{2}\right)_{2}$
$\mathrm{HSi}\left(\mathrm{NH}_{2}\right)_{3}$
$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{NH} \cdot \mathrm{CH}_{3}$
$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$
$\mathrm{H}_{2} \mathrm{Si}\left(\mathrm{NH} \cdot \mathrm{CH}_{3}\right)_{2}$
$\mathrm{HSi}\left(\mathrm{NH} \cdot \mathrm{CH}_{3}\right)_{3}$
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si} \cdot \mathrm{O} \cdot \mathrm{OC} \cdot \mathrm{CH}_{3}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\left(\mathrm{O} \cdot \mathrm{OC} \cdot \mathrm{CH}_{3}\right)_{2}$

Rule 70.18 Compounds containing carbon as well as silicon and in which there is a " reactive group " in the carbon-containing portion of the molecule not shared by a silicon atom are named in terms of the organic parent compound wherever feasible. For the purposes of this rule, a " reactive group" is defined as a group which may be designated by a suffix according to Rule 52.

* Note: This rule is subject to the possible extensions of the oxa-aza convention which are now being considered by the Commission.

Examples: α-Trimethylsilylacetanilide
1-Trichlorosilylethanol
2-Trimethylsilylethanol
(Hydroxydimethylsilyl)methanol
α-(Hydroxydimethylsilyl)acetanilide
(Silylmethyl)amine
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO} \cdot \mathrm{NH} \cdot \mathrm{C}_{6} \mathrm{H}_{5}$
$\mathrm{Cl}_{3} \mathrm{Si} \cdot \mathrm{CH}(\mathrm{OH}) \cdot \mathrm{CH}_{3}$
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}$
OH
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO} \cdot \mathrm{NH} \cdot \mathrm{C}_{6} \mathrm{H}_{5}$
$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{CH}_{2} \cdot \mathrm{NH}_{2}$

But by rules 70.16 and 70.17:
(Methoxymethyl)silanol
N-Methylsilylamine

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{O} \cdot \mathrm{CH}_{2} \cdot \mathrm{SiH}_{2} \cdot \mathrm{OH} \\
& \mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{NH} \cdot \mathrm{CH}_{3}
\end{aligned}
$$

Rule 70.19 Compounds in which metals are combined directly with silicon are, in general, named as derivatives of the metal.

Example: (Triphenylsilyl)lithium $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{SiLi}$
However, in exceptional cases, the metal may be named as a substituent.
Example : Sodium p-(sodiosilyl)benzoate $p-\mathrm{NaO}_{2} \mathrm{C}^{-} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{SiH}_{2} \mathrm{Na}$
Rule 70.20 Metallic salts of hydroxy-derivatives may be named in the customary manner.
Example: Sodium salt of triphenylsilanol $\quad\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Si} \cdot \mathrm{ONa}$

Extended Examples of Radical Names

The purpose of the "extended examples of radical names" is to illustrate further the application of the formal rules given in the preceding document. ${ }^{1}$ Certain other preferences and recommendations of the Commission which may be used as a guide in interpreting the rules or in naming some other types of radicals are indicated under the appropriate headings below.

Rule 54.1

Typical formula and numbering:

Radical name	Formula
Methyl	$\mathrm{CH}_{3}-$
Ethyl	$\mathrm{CH}_{3} \cdot \mathrm{CH}_{2}-$
Propyl	$\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}-$
Butyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CH}_{2}-$
Pentyl, replacing	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{CH}_{2}-$
\quad amyl	
Hexyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{4} \cdot \mathrm{CH}_{2}-$
Heptyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{5} \cdot \mathrm{CH}_{2}-$
Octyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{6} \cdot \mathrm{CH}_{2}-$
Nonyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{7} \cdot \mathrm{CH}_{2}-$
Decyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{8} \cdot \mathrm{CH}_{2}-$
Undecyl, replac-	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{9} \cdot \mathrm{CH}_{2}-$
\quad ing hendecyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{10} \cdot \mathrm{CH}_{2}-$
Dodecyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{11} \cdot \mathrm{CH}_{2}-$
Tridecyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{12} \cdot \mathrm{CH}_{2}-$
Tetradecyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{13} \cdot \mathrm{CH}_{2}-$
Pentadecyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{14} \cdot \mathrm{CH}_{2}-$
Hexadecyl, re-	
\quad placing cetyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{15} \cdot \mathrm{CH}_{2}-$

Alkyl Radicals
Pentyl $\stackrel{5}{\mathrm{C}_{3}} \mathrm{H}_{3} \cdot \stackrel{4}{\mathrm{C}} \mathrm{H}_{2} \cdot \stackrel{3}{\mathrm{C}} \mathrm{H}_{2} \cdot \stackrel{2}{\mathrm{C}} \mathrm{H}_{2} \cdot \stackrel{1}{\mathrm{C}} \mathrm{H}_{2}-$

Radical name	Formula
Octadecyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{16} \cdot \mathrm{CH}_{2}-$
Nonadecyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{17} \cdot \mathrm{CH}_{2}-$
Eicosyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{18} \cdot \mathrm{CH}_{2}-$
Heneicosyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{19} \cdot \mathrm{CH}_{2}-$
Docosyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{20} \cdot \mathrm{CH}_{2}-$
Tricosyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{21} \cdot \mathrm{CH}_{2}-$
Tetracosyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{22} \cdot \mathrm{CH}_{2}-$
Pentacosyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{23} \cdot \mathrm{CH}_{2}-$
Hexacosyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{24} \cdot \mathrm{CH}_{2}-$
Heptacosyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{25}{ }^{\circ} \mathrm{CH}_{2}-$
Octacosyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{26} \cdot \mathrm{CH}_{2}-$
Nonacosyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{27} \cdot \mathrm{CH}_{2}-$
Triacontyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{28} \cdot \mathrm{CH}_{2}-$
Hentriacontyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{29}{ }^{\circ} \mathrm{CH}_{2}-$
Dotriacontyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{30} \cdot \mathrm{CH}_{2}-$
Tritriacontyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{31} \cdot \mathrm{CH}_{2}-$
Tetracontyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{38} \cdot \mathrm{CH}_{2}-$
Pentacontyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{48} \cdot \mathrm{CH}_{2}-$
Hexacontyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{58} \cdot \mathrm{CH}_{2}-$

Rule 54.2

Radical name
(for unsubstituted radicals only)
isoPropyl, replacing sec.-propyl
isoButyl
isoPentyl, replacing isoamyl
isoHexyl
Note, however :
5-Methylhexyl

Rule 54.3

Radical name
Regularly formed
2-Methylpentyl
isoAlkyl Radicals
Formula
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}^{-}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot \mathrm{CH}_{2}-$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}{ }^{-}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CH}_{2}-$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{CH}_{2}-$
Branched alkyl radicals
Formula
${ }^{5} \mathrm{CH}_{3} \cdot{ }^{4} \mathrm{CH}_{2} \cdot{ }^{\mathrm{C}} \mathrm{CH}_{2} \cdot \stackrel{2}{\mathrm{C}} \mathrm{H}\left(\mathrm{CH}_{3}\right) \cdot \stackrel{1}{\mathrm{C}} \mathrm{H}_{2}-$

Recommended exceptions (for unsubstituted radicals only) :
sec.-Butyl
tert.-Butyl
neoPentyl
Rule 54.4
Typical formula and numbering :
cycloHexyl

$\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}\left(\mathrm{CH}_{3}\right)^{-}$
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}^{-}$
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C} \cdot \mathrm{CH}_{2}-$

Alicyclic Radicals

Radical name	Formula cycloPropyl
cy $\left.\mathrm{CH}_{2}\right]_{2}>\mathrm{CH}-$	
cycloButyl	$\left[\mathrm{CH}_{2}\right]_{3}>\mathrm{CH}^{-}$
cycloPentyl	$\left[\mathrm{CH}_{2}\right]_{4}>\mathrm{CH}^{-}$
cycloHexyl	$\left[\mathrm{CH}_{2}\right]_{5}>\mathrm{CH}^{-}$
cycloHeptyl	$\left[\mathrm{CH}_{2}\right]_{6}>\mathrm{CH}^{-}$

Rule 55.1 Unsaturated aliphatic and alicyclic radicals Radical name

Formula

Regularly formed
Ethynyl
$\mathrm{CH}: \mathrm{C}^{-}$
isoPropenyl (for unsubstituted radicals only),
$\mathrm{CH}_{2}: \mathrm{C}\left(\mathrm{CH}_{3}\right)^{-}$ preferred to 1-methylvinyl
Prop-1-ynyl
Prop-2-ynyl, replacing propargyl
$\mathrm{CH}_{3} \cdot \mathrm{C}^{\mathrm{C}} \mathrm{C}-$
Propenyl (=prop-1-enyl)
$\mathrm{CH}: \mathrm{C}^{-} \cdot \mathrm{CH}_{2}-$

Butenyl (-2- shown; replacing crotyl)
$\mathrm{CH}_{3} \cdot \mathrm{CH}: \mathrm{CH}^{-}$
Butadienyl (-1:3-shown)
2-Methylallyl, preferred to methallyl
Pentenyl (-2- shown)
cycloPentenyl (-2- shown)
cycloPentadienyl (-2:4- shown)
cycloHexenyl (-2- shown)
cycloHexadienyl (-2 : 4- shown)

Radical name
Recommended exceptions :
Vinyl, preferred to ethenyl
Allyl, preferred to prop-2-enyl
*Geranyl, preferred to 3:7-dimethylocta-trans-2:6(or 7)- $\mathrm{C}_{10} \mathrm{H}_{17}-$ dienyl
*Linalyl
*Neryl, preferred to 3:7-dimethylocta-cis-2:6(or 7)-dienyl
$\mathrm{C}_{10} \mathrm{H}_{17}-$
*Phytyl, preferred to 3:7:11: 15-tetramethylhexadec-2-enyl

Formula

Rule 56.1
Propylidene, etc.
(1) Saturated aliphatic radicals (parent radicals derived by rules 54.1, 54.2, and 54.3)

Radical name
Regularly formed

Methylidyne	$\mathrm{CH} \equiv$
Ethylidene	$\mathrm{CH}_{3} \cdot \mathrm{CH}=$
Ethylidyne	$\mathrm{CH}_{3} \cdot \mathrm{C} \equiv$
Propylidene	$\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}=$
Propylidyne	$\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{C} \equiv$
*isoPropylidene	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=$
Butylidene	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CH}=$
Butylidyne	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{C} \equiv$
*isoButylidene	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot \mathrm{CH=}$
* sec.-Butylidene	$\left.\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{C}(\mathrm{CH})_{3}\right)=$
*isoButylidyne	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot \mathrm{C} \equiv$
Exception:	

Radical name

Regularly formed
Pentylidene
Pentylidyne
*isoPentylidene
*isoPentylidyne
2-Methylpentylidene
2-Methylpentylidyne
Hexylidene
Hexylidyne
*isoHexylidene
*isoHexylidyne

Formula

$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{CH}=$
$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{C} \equiv$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}=$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot \mathrm{CH}_{2}{ }^{\circ} \mathrm{C} \equiv$
$\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}\left(\mathrm{CH}_{3}\right) \cdot \mathrm{CH}=$
$\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}\left(\mathrm{CH}_{3}\right)^{\circ} \mathrm{C} \equiv$
$\mathrm{CH}_{3}{ }^{\circ}\left[\mathrm{CH}_{2}\right]_{4}{ }^{\circ} \mathrm{CH}=$
$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{4} \cdot \mathrm{C} \equiv$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CH}=$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{C} \equiv$

Methylene

$$
\mathrm{CH}_{2}=
$$

* Recommended for unsubstituted radicals only.

Compound radical names may be formed from these in the usual manner :

Radical name
Naphthylmethylene ${ }^{2}$ (2- shown)
Naphthylmethylidyne (2- shown)

Formula
$2-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{CH}=$
$2-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{C} \equiv$
(2) Alicyclic radicals (parent radicals derived by rules 54.4 and 55.1)
cycloPentylidene
cycloPentenylidene (-2- shown)
cycloPentadienylidene (-2:4- shown)
cycloHexylidene
cycloHexenylidene (-2- shown)
cycloHexadienylidene (-2:5- shown)
$\left[\mathrm{CH}_{2}\right]_{4}>\mathrm{C}=$

$\mathrm{CH}: \mathrm{CH} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{C}=$
$\left[\mathrm{CH}_{2}\right]_{5}>\mathrm{C}=$

(3) Unsaturated aliphatic radicals (parent radicals derived by rule 55.1)

Radical name

Regularly formed
Butenylidene (-2- shown)
Butenylidyne (-2- shown)
Recommended exceptions:
Vinylidene, preferred to ethenylidene
Allylidene, preferred to prop-2-enylidene

Formula
$\mathrm{CH}_{3} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CH}=$
$\mathrm{CH}_{3} \cdot \mathrm{CH} \cdot \mathrm{CH} \cdot \mathrm{C} \equiv$

```
CH2.C=
CH2}\cdot\textrm{CH}\cdot\textrm{CH}
```

[^1](4) (parent radicals derived in other ways)

Radical name
Formula
Regularly formed
Benzylidene (rule 61.1)
Benzylidyne (rule 61.1)
isoPropylbenzylidene
Cinnamylidene (rule 61.1)
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}=$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{C} \equiv$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}=$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH} \cdot \mathrm{CH} \cdot \mathrm{CH}=$

Fluorenylidene (rule 59.1)

Acenaphthenylidene (rule 59.1)

Rule 56.2
Acetonylidene, etc.
(1) Parent radicals connected with other rules

Parent radical
See Rule 60.1 :
Indolinyl

Phthalidyl
Multivalent radical

Indolinylidene (3- shown)

Phthalidylidene

See Rule 61.1:
Furfuryl

Piperidyl

Phenacyl
3: 4-Methylenedioxybenzyl ${ }^{3}$
o-Hydroxybenzyl ${ }^{4}$

Piperidylidene (2- shown)

Phenacylidene
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CO} \cdot \mathrm{CH}=$
Furfurylidene (2- only)

Piperonylidene

Salicylidene

CO

Formula of multivalent radical

3: 4: $1-\mathrm{CH}_{2} \mathrm{O}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{3} \cdot \mathrm{CH}=$

3 This name is used in Chemical Society publications in preference to piperonyl (which is given in the I.U.P.A.C. text), owing to possible confusion with $3: 4: 1-\mathrm{CH}_{2} \mathrm{O}_{2}: \mathrm{C}_{6} \mathrm{H}_{3}{ }^{-}$(cf. Mitchell, op. cit., p. 87; J., 1951, 3519). However, for the bivalent radical piperonylidene no confusion is possible.
${ }^{4}$ Salicyl in the I.U.P.A.C. text; cf. footnote 3.

Parent radical Multivalent radical Formula of multivalent radical
Thenyl ${ }^{5}$

4-Hydroxy-3-methoxybenzyl ${ }^{6} \quad$ Vanillylidene

$3: 4: 1-\mathrm{CH}_{3} \mathrm{O} \cdot \mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH}) \cdot \mathrm{CH}=$
(2) Parent radicals not connected with other rules

Acetonyl
Rule 57.1
Radical name
Regularly formed
Ethylene
Trimethylene
Tetramethylene
Pentamethylene
Rule 57.2
Radical name
Regularly formed
Propenylene
Butenylene (-2- shown) Ethynylene

Rule 57.3

Radical name
cycloPentylene, cyclopent-1:3-ylene shown
cycloHexenylene (cyclo-hex-3-en-1 : 2-ylene shown)

cycloPentylene, etc.

Radical name
cycloHexadienylene (cyclo-hexa-3 : 5-dien-1 : 3-ylene shown)

Formula
Formula

$-\mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}-$
$-\mathrm{CH}_{2} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CH}_{2}-\quad$ Recommended exception :
$-\mathrm{CH}_{2} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{CH}_{2}-$
$\mathrm{CH}_{3} \cdot \mathrm{CO} \cdot \mathrm{CH}=$

Formula	Radical name	
	Regularly formed	Formula
$-\mathrm{CH}_{2} \cdot \mathrm{CH}_{2}-$	Hexamethylene	$-\mathrm{CH}_{2} \cdot\left[\mathrm{CH}_{2}\right]_{4} \cdot \mathrm{CH}_{2}-$
$-\mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}$	Recommended exception:	
$-\mathrm{CH}_{2} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CH}_{2}-$	Propylene	$\mathrm{CH}_{3} \cdot \mathrm{CH}_{1} \cdot \mathrm{CH}_{2}-$

Butenylene, etc.
Formula
Radical name
Formula
Recommended exception :
Vinylene, preferred to $-\mathrm{CH}: \mathrm{CH}^{-}$ ethenylene
$-\mathrm{C}: \mathrm{C}_{2}-$

$$
\mathrm{CH}_{3} \cdot \mathrm{CH}^{\mathrm{H}} \cdot \mathrm{CH}_{2}-
$$

Formula

Acetonylidene
Trimethylene, etc.
Thenylidene (2- shown)

Propylene

Rule 58.1
Parent acid ending Carboxylic

Carbonyl
Parent radical ending Carbonyl

Formula
$-\mathrm{CO}^{-}$

Note : In general this ending for the names of acid radicals is to be restricted to cases where a name ending in oyl is not practicable.

Examples:
cycloHexanecarbonyl chloride $\quad \mathrm{C}_{6} \mathrm{H}_{11} \cdot \mathrm{COCl}$
Methoxycarbonyl ${ }^{7}$
Propanetricarbonyl (-1:2:3- shown)

Rule 58.2
Sulphonyl, ETC

Radical name
Sulphonyl
Sulphinyl

Formula
$-\mathrm{SO}_{2}-$
$-\mathrm{SO}^{-}$

Radical name
Benzenesulphonyl
Benzenesulphinyl

Formula
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{SO}_{2}-$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{SO}^{-}$

[^2]The following names are also recommended :

Sulphanilyl
$\left.\begin{array}{l}\text { Toluene- } p \text {-sulphonyl } \\ p \text {-Tolylsulphonyl }\end{array}\right\}$, preferred to tosyl ${ }^{8}$

$$
\begin{aligned}
& p-\mathrm{NH}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{SO}_{2}- \\
& p-\mathrm{CH}_{3} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{SO}_{2}-
\end{aligned}
$$

(Note : tosyl is recommended only for p-isomer.)
Note the following difference in additive and substitutive names : ${ }^{9}$

Benzenesulphonyl chloride ${ }^{9}$
Phenylsulphonylacetic acid ${ }^{9}$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{SO}_{2} \mathrm{Cl}$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{SO}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{H}$
and so for sulphinyl, etc.

Rule 58.3

Oyl radicals

The Commission favours in principle the use of systematic names for the higher saturated monobasic and dibasic aliphatic acids, i.e., those with more than five carbon atoms, and their radicals when substituents are present. The Commission also recommends that the carboxylcarbon atom be always numbered as l whether the name be a Geneva name or a trivial name, but not when it is a "carbonyl" name. ${ }^{10}$

Examples of numbering:

(1) Saturated aliphatic monocarboxylic acid radicals

Radical name

Formyl
Acetyl
Propionyl
Butyryl
isoButyryl ${ }^{11}$
Valeryl
isoValeryl ${ }^{11}$

Formula
$\mathrm{H} \cdot \mathrm{CO}^{-}$
$\mathrm{CH}_{3}{ }^{-} \mathrm{CO}^{-}$
$\mathrm{CH}_{3}{ }^{\circ} \mathrm{CH}_{2} \cdot \mathrm{CO}^{-}$
$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CO}^{-}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot \mathrm{CO}^{-}$
$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{CO}^{-}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}^{-}$
${ }^{8}$ The text seems to mean that (a) tosyl should not be used at all, but (b), if it is used, then it shall be confined to the p-isomer. This approximates to present Chemical Society practice (which will therefore not be changed) that tosyl is permitted as a prefix in carbohydrate and steroid chemistry (owing to long usage) but not elsewhere. Tosic acid, tosate, and tosylate, are not permitted, nor, in Chemical Society publications, is tosyl chloride. See also footnote 9 .
${ }^{9}$ The difference requires consideration in the light of rules 25, 47, and 58.2. When a radical $\mathrm{R} \cdot \mathrm{SO}_{2}-$ is attached to $\mathrm{Cl}, \mathrm{NH}_{2}$, etc., the substance is named as a derivative of the acid $\mathrm{R} \cdot \mathrm{SO}_{3} \mathrm{H}$, e.g., it is the acid chloride or amide of benzenesulphonic acid, the sulphonic acid group being inserted, as a suffix, into the benzene molecule name. When, however, $\mathrm{R} \cdot \mathrm{SO}_{2}-$ is attached to carbon, then the group $\mathrm{R} \cdot \mathrm{SO}_{2}-$ is considered to be a substituent in another molecule and is named as phenylsulphonyl, i.e., the phenyl radical $\mathrm{C}_{6} \mathrm{H}_{5}-$ and the bivalent sulphonyl radical $-\mathrm{SO}_{2}-$ are juxtaposed by additive nomenclature.

This difference is carried over to more complex radicals formed from $\mathrm{R} \cdot \mathrm{SO}_{2}-$. Thus one has β-benzenesulphonamidopropionic acid $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{SO}_{2} \cdot \mathrm{NH} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{H}$, but phenylsulphonylpropionic acid $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{SO}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{H}$; and toluene- p-sulphonamidothiophen, but p-tolylsulphonylthiophen (or, in Chemical Society practice, alternatively, thienyl p-tolyl sulphone).

10 This corresponds in the main to current Chemical Society practice. The last phrase means that when, for instance, hexanoic acid is named pentane-1-carboxylic acid the $\mathrm{CO}_{2} \mathrm{H}$ group is not numbered and the α-carbon atom then (but only then) bears the number 1 . However, when trivial names are used for lower members of the series, Greek letters are employed in Chemical Society publications, and the $\mathrm{CO}_{2} \mathrm{H}$ group is not specified; this does not conform to I.U.P.A.C. rules but is considered wise because of past variations in Chemical Society numbering for these acids.
${ }^{11}$ Presumably the iso-acid names may be used only for the unsubstituted acids as this principle applies to $i s o$-hydrocarbon names.

Radical name

Hexanoyl, replacing caproyl
Heptanoyl, replacing enanthoyl, œnanthyl, etc.
Octanoyl, replacing capryloyl and caprylyl
Nonanoyl, replacing pelargonoyl and pelargonyl
Decanoyl, replacing caprinoyl and capryl
Undecanoyl
Lauroyl
Tridecanoyl
Myristoyl
Pentadecanoyl
Palmitoyl
Heptadecanoyl
Stearoyl

Systematic name
Formula
$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{4} \cdot \mathrm{CO}^{-}$
$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{5}{ }^{\circ} \mathrm{CO}^{-}$
$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{6} \cdot \mathrm{CO}^{-}$
$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{7} \cdot \mathrm{CO}^{-}$
$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{8} \cdot \mathrm{CO}^{-}$
$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{9} \cdot \mathrm{CO}^{-}$
$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{10}{ }^{\circ} \mathrm{CO}^{-}$
$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{11} \cdot \mathrm{CO}^{-}$
$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{12} \cdot \mathrm{CO}^{-}$
$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{13} \cdot \mathrm{CO}^{-}$
Hexadecanoyl $\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{14} \cdot \mathrm{CO}^{-}$
$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{15}{ }^{\circ} \mathrm{CO}^{-}$
Octadecanoyl $\mathrm{CH}_{3}{ }^{\circ}\left[\mathrm{CH}_{2}\right]_{16}{ }^{\circ} \mathrm{CO}^{-}$

The following radicals are named in like manner :
Acetoacetyl
$\mathrm{CH}_{3} \cdot \mathrm{CO}^{\cdot} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}^{-}$
Phenylacetyl
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}^{-}$
(2) Saturated normal aliphatic dicarboxylic acid radicals

Oxalyl
Malonyl
Succinyl
Glutaryl
Adipoyl
Pimeloyl
Suberoyl
Azelaoyl
Sebacoyl

	$-\mathrm{CO} \cdot \mathrm{CO}^{-}$
	$-\mathrm{CO} \cdot \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}^{-}$
	$-\mathrm{CO} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CO}^{-}$
	$-\mathrm{CO} \cdot\left[\mathrm{CH}_{2}\right]^{\circ} \mathrm{CO}^{-}$
Hexanedioyl	$-\mathrm{CO} \cdot\left[\mathrm{CH}_{2}\right]^{\circ} \cdot \mathrm{CO}$
Heptanedioyl	$-\mathrm{CO} \cdot\left[\mathrm{CH}_{2}\right]^{\circ} \cdot \mathrm{CO}$
Octanedioyl	$-\mathrm{CO} \cdot\left[\mathrm{CH}_{2}\right]^{\circ} \cdot \mathrm{CO}$
Nonanedioyl	$-\mathrm{CO} \cdot\left[\mathrm{CH}_{2}\right]^{\circ} \cdot \mathrm{CO}$
Decanedioyl	$-\mathrm{CO} \cdot\left[\mathrm{CH}_{2}\right]_{8} \cdot \mathrm{CO}$

The following radical is named in like manner :
Mesoxalyl
$-\mathrm{CO} \cdot \mathrm{CO} \cdot \mathrm{CO}^{-}$
(3) $\mathrm{RO} \cdot \mathrm{CO}-$ radicals

Methoxycarbonyl, replacing carbomethoxy ${ }^{12}$
$\mathrm{CH}_{3} \mathrm{O} \cdot \mathrm{CO}^{-}$
Ethoxycarbonyl, replacing carbethoxy ${ }^{12}$

$\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{O}^{\cdot} \cdot \mathrm{CO}^{-}$
Note: These are recommended prototypes of the more general series of the radicals $\mathrm{RO} \cdot \mathrm{CO}^{-} .^{12}$
(4) $\mathrm{RO} \cdot \mathrm{CO} \cdot \mathrm{CO}$ - vadicals

Methoxalyl
$\mathrm{CH}_{3} \mathrm{O} \cdot \mathrm{CO} \cdot \mathrm{CO}^{-}$
Ethoxalyl
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O} \cdot \mathrm{CO} \cdot \mathrm{CO}^{-}$

[^3](5) Other recommended radical names

Radical name
Acryloyl
Anisoyl (p - shown)
Anthraniloyl
Aspartoyl
Atropoyl, preferred to 2-phenylacryloyl
Benziloyl
Benzoyl

Camphoroyl

Cinnamoyl
Citraconoyl
Crotonoyl, preferred to trans-but-2-enoyl
3:4-Dimethoxyphenylacetyl, replacing homoveratroyl
Note : in the same way other " homo" names.
Dimethylbenzoyl (2:3-shown), replacing xyloyl ${ }^{13}$
p-isoPropylbenzoyl, replacing cumoyl
Fumaroyl
Furoyl (3- shown)
Galloyl
Glutamoyl
Glyceroyl
Glycolloyl
Glyoxyloyl
Hippuroyl
Hydratropoyl, preferred to 2-phenylpropionyl
Lactoyl
Maleoyl
Maloyl
Mesaconoyl
Methacryloyl, preferred to 2-methylacryloyl ${ }^{14}$
Naphthoyl (2- shown)
Oleoyl, preferred to cis-octadec-9-enoyl
Phenylacetyl
Phthaloyl
isoPhthaloyl
Piperonyloyl
Pivaloyl
Propioloyl
Protocatechuoyl
Pyruvoyl
Salicyloyl
Tartronoyl
Terephthaloyl

Formula
CH_{2} : $\mathrm{CH} \cdot \mathrm{CO}^{-}$
$p-\mathrm{CH}_{3} \mathrm{O}^{\cdot} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CO}^{-}$
$O-\mathrm{NH}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CO}^{-}$
$-\mathrm{CO}^{-} \mathrm{CH}_{2} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-}$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot{ }^{\circ}\left({ }^{(} \mathrm{CH}_{2}\right) \cdot \mathrm{CO}^{-}$
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}(\mathrm{OH}) \cdot \mathrm{CO}^{-}$
$\mathrm{C}_{6} \mathrm{H}_{5}{ }^{-} \mathrm{CO}^{-}$

$\mathrm{C}_{6} \mathrm{H}_{5}{ }^{\circ} \mathrm{CH} \cdot{ }^{-} \mathrm{CH} \cdot \mathrm{CO}^{-}$
$-\mathrm{CO} \cdot \mathrm{C}\left(\mathrm{CH}_{3}\right) \cdot \mathrm{CH} \cdot \mathrm{CO}-(c i s)$
$\mathrm{CH}_{3} \cdot{ }^{\circ} \mathrm{CH}: \mathrm{CH}^{-} \mathrm{CO}^{-}$
3:4:1-($\left.\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \cdot \mathrm{CH}_{2}{ }^{\circ} \mathrm{CO}^{-}$

2:3:1-($\left.\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \cdot \mathrm{CO}^{-}$
$p-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CO}^{-}$
$-\mathrm{CO} \cdot \mathrm{CH} \cdot \mathrm{CH} \cdot \mathrm{CO}^{-}$(trans)

3:4:5:1-(HO) $\mathrm{C}_{6} \mathrm{H}_{2} \cdot \mathrm{CO}^{-}$
$-\mathrm{CO}^{\cdot} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-}$
$\mathrm{HO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}(\mathrm{OH}) \cdot \mathrm{CO}^{-}$
$\mathrm{HO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}^{-}$
$\mathrm{OHC} \cdot \mathrm{CO}^{-}$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CO} \cdot \mathrm{NH}^{-} \mathrm{CH}_{2} \cdot \mathrm{CO}^{-}$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}\left(\mathrm{CH}_{3}\right) \cdot \mathrm{CO}^{-}$
$\mathrm{CH}_{3} \cdot \mathrm{CH}(\mathrm{OH}) \cdot \mathrm{CO}^{-}$
$-\mathrm{CO} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}-($ cis $)$
$-\mathrm{CO} \cdot \mathrm{CH}(\mathrm{OH}) \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}^{-}$
$-\mathrm{CO} \cdot \mathrm{C}\left(\mathrm{CH}_{3}\right) \cdot \mathrm{CH} \cdot \mathrm{CO}-$ (trans)
$\mathrm{CH}_{2} \cdot \mathrm{C}^{-}\left(\mathrm{CH}_{3}\right) \cdot \mathrm{CO}^{-}$
$2-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{CO}^{-}$
$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{7} \cdot \mathrm{CH}: \cdot \mathrm{CH} \cdot\left[\mathrm{CH}_{2}\right]_{7} \cdot \mathrm{CO}^{-}$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}_{2}{ }^{-} \mathrm{CO}^{-}$
$o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CO}^{-}\right)_{2}$
$m-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CO}^{-}\right)_{2}$
$3: 4: 1-\mathrm{CH}_{2} \mathrm{O}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{3} \cdot \mathrm{CO}^{-}$
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{-} \mathrm{CO}^{-}$
$\mathrm{CH}: \mathrm{C} \cdot \mathrm{CO}-$
3:4:1-(HO) $\mathrm{C}_{6} \mathrm{H}_{3} \cdot \mathrm{CO}^{-}$
$\mathrm{CH}_{3} \cdot \mathrm{CO} \cdot \mathrm{CO}^{-}$
$o-\mathrm{HO}^{\cdot} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CO}^{-}$
$-\mathrm{CO} \cdot \mathrm{CH}(\mathrm{OH}) \cdot{ }^{-} \mathrm{CO}^{-}$
$p-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CO}^{-}\right)_{2}$

[^4]Radical name

Thenoyl (2-shown)
Toluoyl (o-shown) ${ }^{15}$
Tropoyl
Vanilloyl
Veratroyl

Formula

${ }_{o-} \mathrm{CH}_{3} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CO}^{-}$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}\left(\mathrm{CH}_{2} \cdot \mathrm{OH}\right) \cdot \mathrm{CO}^{-}$
$3: 4: 1-\mathrm{CH}_{3} \mathrm{O}^{\cdot} \cdot \mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH}) \cdot \mathrm{CO}^{-}$
3:4:1-($\left.\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}{ }^{\circ} \mathrm{CO}^{-}$

Rule 58.4

Radical name ${ }^{16}$
Carbamoyl
Phenylcarbamoyl
Oxamoyl Phthalamoyl

Amoyl radicals

Formula
$\mathrm{H}_{2} \mathrm{~N} \cdot \mathrm{CO}^{-}$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NH} \cdot \mathrm{CO}^{-}$
$\mathrm{H}_{2} \mathrm{~N} \cdot \mathrm{CO} \cdot \mathrm{CO}^{-}$ $o-\mathrm{NH}_{2} \cdot \mathrm{CO}^{\cdot} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CO}^{-}$

Radical name ${ }^{16}$
Succinamoyl
Sulphamoyl
Phenylsulphamoyl

Formula
$\mathrm{NH}_{2} \cdot \mathrm{CO}^{-} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}^{-}$
$\mathrm{NH}_{2} \cdot \mathrm{SO}_{2}-$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NH} \cdot \mathrm{SO}_{2}-$

Rule 58.5

Parent acid
Regularly formed Alanine
Arginine
Cystine
Glycine
Histidine
Leucine isoLeucine
Lysine
Methionine
Norleucine
Ornithine
Proline
Serine
Threonine
Thyronine
Tyrosine
Valine

Amino-acid radicals
Radical name
Alanyl
Arginyl
Cystyl
Glycyl
Histidyl
Leucyl
isoLeucyl
Lysyl
Methionyl
Norleucyl
Ornithyl
Prolyl
Seryl
Threonyl
Thyronyl
Tyrosyl
Valyl

Tauryl

Asparaginyl
Cysteinyl
Glutaminyl
Tryptophyl
The following names are recommended : ${ }^{17}$
Aspartic acid
Glutamic acid
Aspartyl
Glutamyl

In the same way :
Taurine
Recommended exceptions :
Asparagine
Cysteine
Glutamine

Tryptophan
$\mathrm{CH}_{3} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-}$
$\mathrm{NH}_{2} \cdot \mathrm{C}(\cdot \mathrm{NH}) \cdot \mathrm{NH} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-}$
$\left[\cdot \mathrm{S} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-}\right]_{2}$
$\mathrm{NH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}^{-}$
$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}-$
$\mathrm{C}_{2} \mathrm{H}_{5} \cdot{ }^{\cdot} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-}$
$\mathrm{NH}_{2} \cdot\left[\mathrm{CH}_{2}\right]_{4} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-}$
$\mathrm{CH}_{3} \cdot \mathrm{~S}^{-} \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-}$
$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-}$
$\mathrm{NH}_{2} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}-$
$\mathrm{NH} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH} \cdot \mathrm{CO}-$
$\mathrm{HO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}-$
$\mathrm{CH}_{3} \cdot \mathrm{CH}(\mathrm{OH}) \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}-$

$p-\mathrm{HO} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-}$
$\mathrm{NH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{SO}_{2}{ }^{-}$
: ${ }^{17}$

$$
\begin{array}{ll}
\text { Aspartoyl } & -\mathrm{CO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-} \\
\text {Glutamoyl } & -\mathrm{CO}^{\cdot} \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}^{2}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-}
\end{array}
$$

[^5]
Rule 58.6

Radical name
Regularly formed
Formamido
Acetamido
Propionamido
Heptanamido, preferred to hexanecarbonamido ${ }^{18}$
Benzamido
Benzenesulphonamido
Recommended exceptions :
Ureido
3-Phenylureido

Amido-radicals
Formula
$\mathrm{H} \cdot \mathrm{CO} \cdot \mathrm{NH}^{-}$
$\mathrm{CH}_{3} \cdot \mathrm{CO} \cdot \mathrm{NH}^{-}$
$\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO} \cdot \mathrm{NH}^{-}$
$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{5} \cdot \mathrm{CO} \cdot \mathrm{NH}-$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CO} \cdot \mathrm{NH}^{-}$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{SO}_{2} \cdot \mathrm{NH}^{-}$
$\mathrm{NH}_{2} \cdot \mathrm{CO} \cdot \mathrm{NH}^{-}$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NH} \cdot \mathrm{CO} \cdot \mathrm{NH}^{-}$

Rule 58.7
Radical name
Phthalimido
Succinimido

Imido-radicals

Formula
${ }^{0}-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CO})_{2} \mathrm{~N}^{-}$

Imidoyl radicals

Radical name ${ }^{19}$
Benzimidoyl

Radical name ${ }^{19}$
Acetimidoyl
Rule 58.8

Formula
$\mathrm{CH}_{3} \cdot \mathrm{C}(: \mathrm{NH})^{-}$

Radical name
However :
Formuia

Diacetylamino $\quad\left(\mathrm{CH}_{3} \cdot \mathrm{CO}_{2} \mathrm{~N}^{-}\right.$

Formula

Formula
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{C}(: \mathrm{NH})^{-}$

Amino, anilino, etc.
Radical name
Regularly formed
Ethylamino
Dimethylamino
Anilino
Anisidino (p - shown)
Benzidino
Cumidino
Guanidino
Phenetidino (p - shown)
Toluidino (p-shown) ${ }^{20}$
2:4:5-Trimethylanilino, replacing pseudocumidino
$2: 4: 6$-Trimethylanilino, replacing mesidino ${ }^{21}$
Xylidino (2:3-shown) ${ }^{20}$
Other recommended amino-radicals :
Amidino, replacing guanyl
Sulphoamino

Rule 58.9

$\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{NH}^{-}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}^{-}$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NH}^{-}$
$p-\mathrm{CH}_{3} \mathrm{O}^{\circ} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}-$
$p-\mathrm{NH}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}^{-}(p)$ $p-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}^{-}$ $\mathrm{NH}_{2} \cdot \mathrm{C}(: \mathrm{NH}) \cdot \mathrm{NH}^{-}$
$p-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}^{-}$
$p-\mathrm{CH}_{3} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}^{-}$
2:4:5:1-($\left.\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2} \cdot \mathrm{NH}^{-}$
2:4:6:1-($\left.\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2} \cdot \mathrm{NH}^{-}$
$2: 3: 1-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \cdot \mathrm{NH}^{-}$
${ }^{18}$ Cf. note to rule 32.
${ }^{19} \mathrm{Cf}$. note to rule 58.8 .
${ }^{20}$ The numbering of $2: 3$-xylidino shows that the amino-, and not the methyl, group carries the number 1. Thus in p-toluidino the NH^{-}and not the CH_{3} carries the number 1. This will apply necessarily also to the amines themselves and to analogous compounds. The necessary changes will be introduced forthwith in Chemical Society publications. Cf. footnote 13.
${ }_{21}$ The loss of mesidino, but retention of mesityl (cf. p. 5091) and absence of mention of mesitoyl, should be noted.

Radical name	Formula
Acenaphthenyl (7-shown)	
Recommended exceptions :	
Naphthyl (2-shown)	
Anthryl (2- shown)	
Diphenylyl (4-shown) ${ }^{23}$	
Phenanthryl (2-shown)	
Recommended radical names of related nature :	
Anthraquinonyl (2-shown)	
Indanyl (2-shown)	
Benzoquinonyl (p-shown) ${ }^{24}$	
${ }^{23}$ The unsubstituted radical is called p-dip applies to its substituted derivatives. ${ }^{24}$ Note that the numbering does not chang from the parent quinone.	ylyl. The numbering en a radical is formed

Rule 59.1

${ }^{22}$ The point of attachment, and not the methyl group, carries the number 1. The necessary changes will be introduced forthwith in Chemical Society publications. Cf. footnotes 13 and 20.

Formula

Parent compound	Radical name	Formula
Benzoxazole	Benzoxazolyl (2- shown)	
Carbazole	Carbazolyl (9- shown)	
4: 5-Dihydroglyoxaline ${ }^{30}$	4: 5-Dihydroglyoxalin-2-yl	
Furan ${ }^{27}$	*Furyl (3- shown)	
Glyoxaline ${ }^{30}$	Glyoxalin-2-yl	
Indazole	Indazolyl (2- shown)	
Indoline	Indolinyl (1- shown)	
30 The I.U.P.A.C and their derived rad and glyoxalinyl," but lature, and the Che ntil the question is	text gives imidazole, imida dicals. It gives " imidazoly this is an isolated revision of ical Society will retain its onsidered in toto by I.U.P.A	line, imidazolidin replacing glyoxaly eterocyclic nomen mes as given above

Rule 60.1
Heterocyclic radicals
(The recommended exceptions are indicated by an *)

[^6]| Parent compound | Radical name | Formula |
| :---: | :---: | :---: |
| Oxazoline | Δ^{2}-Oxazolinyl (-2-shown) ${ }^{31}$ | |
| Oxazole | Oxazolyl
 (2- shown) | |
| isoOxazole | isoOxazolyl
 (3- shown) | |
| Pentazole | Pentazolyl | |
| Perimidine | Perimidinyl
 (2- shown) | |
| Phenanthridine ${ }^{32}$ | Phenanthridinyl
 (2- shown) | |
| Phenazine | Phenazinyl (1- shown) | |

[^7]Parent compound (
isoIndoline
pseudoIndole

Morpholine

1:4-Oxazine
Oxazolidine

Parent compound
Pyrazole
Pyridazine
Pyridine
Pyrimidine
Pyrrolidine
Pyrroline
Pyrrole
Quinazoline
Quinoline
Py
Py
Py
Py

Radical name	Formula
Phthalazinyl (1- shown)	
Phthalidyl	
*Piperidino	
*Piperidyl (2- shown)	
Pyranyl (2H-Pyran-3-yl shown)	
Pyrazinyl	
Pyrazolidinyl (3- shown)	
Pyrazolinyl (Δ^{3}-Pyrazolin-1-yl shown)	

Parent compound
Phthalazine

Phthalide

Piperidine

Pyran

Pyrazine
 Pyrazolidine

Pyrazoline

Parent compoun	d Radical name	Formula	
Thiazolidine	Thiazolidinyl (3- shown)		
Thiazoline	Thiazolinyl (Δ^{2}-Thiazolin-2-yl shown) ${ }^{34}$		
Thiazole	Thiazolyl (2- shown)	$\stackrel{\mathrm{S}}{\substack{1 \\ \\|_{4}^{5} \\ 4 \\ 3 \\ 3}}$	
Thiophen	*Thienyl (2-shown)	$\left[\begin{array}{c} \mathrm{S} \\ \begin{array}{l} 1 \\ 4 \\ 4 \end{array} \\ \hline \end{array}\right]$	
Triazine	Triazinyl (1:2:3-Triazin-4-yl shown)		
Triazolidine	Triazolidinyl (1:2:3-Triazolidin-1-yl shown)		
Triazole	Triazolyl (1:2:4-Triazol-3-yl shown)		
Xanthen	Xanthenyl (9- shown)		

[^8]| Parent compound | Radical name | Formula |
| :---: | :---: | :---: |
| isoQuinoline | *isoQuinolyl
 (3- shown) | |
| Quinoxaline | Quinoxalinyl
 (2- shown) | |
| Quinuclidine | Quinuclidinyl
 (2- shown) | |
| Tetrahydroglyoxaline ${ }^{30}$ | Tetrahydro-2-glyoxalinyl | |
| Tetrazole | Tetrazolyl
 (1- shown) | |
| Thionaphthen ${ }^{33}$ | Thionaphthenyl (2- shown) | |
| Thiazine | ```Thiazinyl (1:3-Thiazin-2-yl shown)``` | |

[^9]Rule 61.1

Radical name	Formula
Typical examples of numbering :	
3-Phenylpropyl	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \stackrel{3}{C} \mathrm{H}_{2} \cdot \stackrel{2}{\mathrm{C}} \mathrm{H}_{2} \cdot \stackrel{1}{\mathrm{C}} \mathrm{H}_{2}-$
Cinnamyl	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CH}_{2}-$
Regularly formed	
Diphenylmethyl, replacing benzhydryl ${ }^{3}$	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CH}^{-}$
3-Phenylpropyl	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}{ }^{-}$
3-Furylmethyl	
3: 4-Dimethoxyphenethyl, replacing homoveratryl ${ }^{36}$	3:4:1-($\left.\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}-$
In the same way other " homo " radicals	
Recommended exceptions :	
Benzyl	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}_{2}-$
Cinnamyl	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH} \cdot \mathrm{CH} \cdot \mathrm{CH}_{2}-$
Furfuryl (2- only)	
3:4-Dimethoxybenzyl ${ }^{36}$	3:4:1-($\left.\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \cdot \mathrm{CH}_{2}{ }^{-}$
2 -Hydroxybenzyl ${ }^{36}$	$o-\mathrm{HO} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}_{2}-$
4-Hydroxy-3-methoxybenzyl ${ }^{36}$	3:4:1-CH3 ${ }^{-} \cdot \mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH}) \cdot \mathrm{CH}_{2}-$
Methoxybenzyl (4-shown)	$4-\mathrm{CH}_{3} \mathrm{O} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}_{2}-$
2-Methylbenzyl	$2-\mathrm{CH}_{3} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}_{2}{ }^{-}$
α-Methylbenzyl ${ }^{87}$	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}\left(\mathrm{CH}_{3}\right)^{-}$
3: 4-Methylenedioxybenzyl ${ }^{36}$	3:4:1-CH2O2 $: \mathrm{C}_{6} \mathrm{H}_{3} \cdot \mathrm{CH}_{2}-$

[^10]${ }^{37}$ Replacing the usual British form, 1-phenylethyl.

Halogen radicals ${ }^{41}$
Radical name
药 1

Rule 19
adical name
Bromo
Chloro
Fluoro
Radical name
(1) $R \cdot O^{-}$
(1) $R \cdot O^{-}$

$\mathrm{CH}_{3} \mathrm{O}^{-}-$

$\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{O}^{-}$
$\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}$
$\stackrel{\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}}{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot \mathrm{O}^{-}}$
$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{O}^{-}$
$\left.\mathrm{CH}_{3}\right)_{2} \mathrm{CH}^{\circ} \cdot \mathrm{CH}_{2} \mathrm{O}^{-}-{ }^{-}$ $-\mathrm{O} \cdot{ }^{\circ} \mathrm{H} \cdot{ }^{\circ} \mathrm{HJ} \cdot \mathrm{HO} \cdot{ }^{\circ} \mathrm{HO} \cdot{ }^{8} \mathrm{HJ}$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{O}^{-}$ $\mathrm{CH}_{2} \cdot \mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{O}^{-}$ $\mathrm{C}_{6} \mathrm{H}_{5}{ }^{\circ} \mathrm{O}_{5} \cdot \mathrm{CH}_{2} \cdot \mathrm{O}^{-}$ $2-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{O}^{-}$ $-\mathrm{O} \cdot \mathrm{CH}_{2} \cdot \mathrm{O}^{-}$
$-\mathrm{O} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot$
 $\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2}-$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CO}_{2}-$
$2-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{CO}_{2}-$
${ }^{41}$ The halogen radicals should be primarily the concern of the Inorganic Commission of I.U.P.A.C., but are presumably listed here particularly to emphasise that fluoro, not fluo, is desired.
${ }^{42}$ Retention of yl in pentyloxy sets the pattern for higher homologues (cf. also naphthyloxy). The yl is elided only in the eight cases listed.

Radical name	Formula	Based on rule
Diazo		43
Diazonium	$\mathrm{N}: \mathrm{N}^{+}$	43
Azino	$=\mathrm{N} \cdot \mathrm{N}=$	
Nitramino ${ }^{50}$	$\mathrm{NO}_{2} \cdot \mathrm{NH}^{-}$	
Nitrosamino ${ }^{50}$	$\mathrm{NO} \cdot \mathrm{NH}^{-}$	
Nitrosimino ${ }^{50}$	$\mathrm{NO} \cdot \mathrm{N}=$	
Azoxy	$-\mathrm{N}: \mathrm{N}(\rightarrow \mathrm{O})^{-}$	52
Phenylazo ${ }^{51}$	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{~N}: \mathrm{N}^{-}$	
Azido	$\mathrm{N}_{3}-$	
Triazeno	$\mathrm{NH}_{2} \cdot \mathrm{~N}: \mathrm{N}^{-}$	
Diazoamino	$-\mathrm{N}: \mathrm{N} \cdot \mathrm{NH}-$	
Phenylenebisazo (p - shown)	$-\mathrm{N}: \mathrm{N}^{+} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~N} \cdot \mathrm{~N}-(p)$	
Semicarbazido	$\mathrm{NH}_{2} \cdot \mathrm{CO} \cdot \mathrm{NH} \cdot \mathrm{NH}^{-}$	
Semicarbazono	$\mathrm{NH}_{2} \cdot \mathrm{CO} \cdot \mathrm{NH} \cdot \mathrm{N}=$	
Ureylene	$-\mathrm{NH} \cdot \mathrm{CO} \cdot \mathrm{NH}^{-}$	36
Radicals containing other elements		
$\mathrm{Au}:$ Auro Au^{-}		
Auri	$\mathrm{Au}=$	
Hg : Chloromercuri	ClHg^{-}	48
Mercuri	$-\mathrm{Hg}-$	48
Se: Selenino	$\mathrm{HO}_{2} \mathrm{Se}^{-}$	
Seleninyl	OSe=	
Seleno	${ }^{-\mathrm{Se}^{-}}$	
Selenono	$\mathrm{HO}_{3} \mathrm{Se}^{-}$	
Selenonyl	$\mathrm{O}_{2} \mathrm{Se}=$	
Selenyl	HSe^{-}	
Si: The organosilicon radicals are listed in rule 70.6.		
Sn : Stannyl	$\mathrm{H}_{3} \mathrm{Sn}-$	
Te: Telluro	$-\mathrm{Te}{ }^{-}$	

[^11]
LIST OF RADICAL NAMES
The purpose of this list of radicals is to provide a convenient check list of recommended names for the more common radicals. The majority of these names are logically derived from I.U.P.A.C. rules and may serve as prototypes for the other members of their respective family or series. Certain other names are included as being preferred to their systematic names because of long established usage or outstanding convenience. Regularly formed compound radical names are not ordinarily included. A few are listed, however, to clarify certain of the recommendations. The absence of a radical name from this list does not necessarily reflect upon its accuracy.
The names in this list are the same as those shown in the list of extended examples [and they are also indexed by formula in the I.U.P.A.C. text].
The rule on which a given name is based is indicated by number while an exception to a rule is indicated by "Ex." Special recommendations in regard to the use of certain names are indicated as follows :

* for unsubstituted radical only. ** for use when substituted. *** an acid radical.
[The appropriate rule and extended examples should be consulted for editorial comment. Ed.]
Based on rule no.
52
蓝 0_{0}° $\mathfrak{o c c c o c}$ 0 $\stackrel{\otimes}{\otimes}$

$\mathrm{NH}_{2}{ }^{-}-$Formula

$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NH}^{-}$
$\mathrm{CH}_{3} \mathrm{O}_{6} \mathrm{C}_{6} \cdot \mathrm{H}_{4} \cdot \mathrm{NH}^{-}$
$\mathrm{CH}_{3} \mathrm{O}^{-\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CO}^{-}}$
$0-\mathrm{NH}_{2} \cdot \mathrm{C}_{6} \mathrm{H}^{4} \cdot \mathrm{CO}^{-}$
$\left(\mathrm{O}_{\cdot}\right)_{2} \mathrm{C}_{14} \mathrm{H}_{7}-$
$\mathrm{C}_{14} \mathrm{H}_{9}-$
$-\mathrm{C}_{14} \mathrm{H}_{8}-$

Amino
amyl, see Pentyl
isoamyl, see isoPe
Anilino
Anisidino (o-, m-,
Anisoyl (o-, m-, or
Anthraniloyl
Anthraquinonyl
Anthryl
Anthrylene Anthrylene Arginyl
Asparaginyl Aspartoyl $\begin{array}{ll}\text { Aspartoyl } & -\mathrm{CO}^{\cdot} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}^{2}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-} \\ \text {Aspartyl } & \mathrm{HO}_{2} \mathrm{C} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-} \\ \begin{array}{l}\text { Atropoyl, preferred to 2- } \\ \quad \text { phenylacryloyl }\end{array} & \mathrm{C}_{6} \mathrm{H}_{5}{ }^{\circ} \mathrm{C}\left(\cdot \mathrm{CH}_{2}\right) \cdot \mathrm{CO}^{-}\end{array}$ phenylacryloyl Auri
Auro
Azelaoyl *
Azido
Azo
Based on rule no.
59.1
62.1
56.1
58.6

58.8
58.3 Ex
65.2
58.3 Ex

60.1
58.3
58.3
58.5
52
55.1 Ex
56.1

$\mathrm{CH}_{3} \cdot \mathrm{C}(: \mathrm{NH})^{-}$ $\mathrm{CH}_{3} \cdot \mathrm{CO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}$ $\mathrm{CH}_{3} \cdot \mathrm{CO}^{\circ} \cdot \mathrm{CH}_{2}{ }^{-}$ $\mathrm{CH}_{3} \cdot \mathrm{CO} \cdot \mathrm{CH}=$ $\mathrm{CH}_{3} \cdot \mathrm{CO} \cdot \mathrm{N}=$ $\mathrm{CH}_{3} \cdot \mathrm{CO} \cdot \mathrm{O}^{-}$ $\mathrm{CH}_{3} \cdot \mathrm{CO}^{-\mathrm{O}^{-}}$
$\mathrm{NC}_{13} \mathrm{H}_{8}^{-}$
$\mathrm{CH}_{2} \cdot \mathrm{CH} \cdot \mathrm{CO}^{-}$ $-\mathrm{CO}_{2} \cdot\left[\mathrm{CH}_{2}\right]_{4} \cdot \mathrm{CO}^{-}$ $\mathrm{CH}_{3} \cdot{ }^{-} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-}$ $\mathrm{CH}_{2} \cdot \mathrm{CH} \cdot \mathrm{CH}_{2}-$ $\mathrm{CH}_{2} \cdot \mathrm{CH} \cdot \mathrm{CH}=$ $\mathrm{CH}_{2} \cdot \mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{O}^{-}$
$\mathrm{NH}_{2} \cdot \mathrm{C}(: \mathrm{NH})^{-}$ วuvи poっppy \quad Radical name
Acenaphthenyl Acenaphthenylene Acenaphthenylidene
Acetimido, Acetylimino
Acetimidoyl Acetoacetyl
Acetonyl
Acetonylidene
Acetyl
Acetylimino, replacing
acetimido
Acetoxy
Acridinyl
Acryloyl
Adipoyl
Aldo (in generic sense)
Allyl, preferred to 2 -propenyl Allylidene, preferred to 2-propenylidene Allyloxy
Amidino, replacing guanyl

?

Editorial Report on Nomenclature, 1952.
Based on rule no.

 ∞

	Formula
	$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{O} \cdot \mathrm{SiH}_{2} \cdot \mathrm{~S}^{-}$
	$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{S} \cdot \mathrm{SiH}_{2} \mathrm{O}^{-}$
	$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{S} \cdot \mathrm{SiH}_{2}-$
	$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{S} \cdot \mathrm{SiH}_{2} \cdot \mathrm{~S}^{-}$
	$\left(\mathrm{H}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}^{-}$
	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{20} \cdot \mathrm{CH}_{2}-$
	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{10}{ }^{\circ} \mathrm{CO}{ }^{-}$
	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{10}{ }^{\circ} \mathrm{CH}_{2}-$
	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{30} \cdot \mathrm{CH}_{2}-$
	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{18} \cdot \mathrm{CH}_{2}-$
	- ${ }^{-}$
	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{C} \cdot \mathrm{CO}^{-}$
	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$
	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{C}^{-}$
	$\mathrm{CH}_{3} \cdot \mathrm{CH}_{2}-$
	$\mathrm{C}_{2} \mathrm{H}_{5} \cdot \mathrm{NH}^{-}$
	$-\mathrm{CH}_{2} \cdot \mathrm{CH}_{2}-$
	$-\mathrm{O} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{O}^{-}$
	$\mathrm{CH}_{3} \cdot \mathrm{CH}=$
	$\mathrm{CH}_{3}{ }^{\text {C }}$ =
	$\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot{ }^{-}$
	$\mathrm{CH}: \mathrm{C}^{-}$
	- $\mathrm{C}: \mathrm{C}-$
	$\mathrm{C}_{13} \mathrm{H}_{9}-$
	$\mathrm{C}_{13} \mathrm{H}_{8}=$
	F-
	$\mathrm{OHC} \cdot \mathrm{NH}^{-}$
	OHC-
	$\mathrm{HCO}^{\circ}{ }^{-}$
	$-\mathrm{CO} \cdot \mathrm{CH} \cdot \mathrm{CH} \cdot \mathrm{CO}-(t$

Radical name
Disiloxanylthio
Disilthianoxy
Disilthianyl
Disilthianylthio
Disilyldisilanyl
Docosyl
Dodecanoyl **
Dodecyl
Dotriacontyl
Eicosyl
enanthoyl, see Heptanoyl
Epoxy (to different atoms
already united in some
other way)
ethenyl, see Vinyl
ethenylene, see Vinylene
ethenylidene, see Vinylidene
Ethoxalyl
Ethoxy
Ethoxycarbonyl, replacing
carbethoxy
Ethyl
Ethylamino
Ethylene
Ethylenedioxy
Ethylidene
Ethylidyne
Ethylthio
Ethynyl
Ethynylene
Fluorenyl
Fluorenylidene
Fluoro
Formamido
Formyl
Formyloxy
Fumaroyl
Fula

 cycloHexadienyl (-2:4-
shown)
cycloHexadienylene
cycloHexadienylene
 Hexamethylene hexanecarbonamido $\underset{\text { Heptanamido }}{\text { H* }}$ Hexanedioyl **
cycloHexasilanyl
cycloHexenyl cycloHexenylene
-з-) әиәр! $К$ кәхәноюок
shown)
isoHexyl
iso 10 Hexyl
cycloHexylene
Hexylidene
isoHexylidene * cycloHexylidene

Hexylidyne
isoHexylidyne * Hippuroyl

 methoxyphenylacetyl
homoveratryl, see $3: 4$-Di-
methoxyphenethyl
 2-phenylpropionyl Hydrazi Hydrazino Hydrazo

Radical name	Formula Based on rule no.	
Furfuryl (2-only)		61.1 Ex
Furfurylidene (2- only)	$\mathrm{O} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CH}: \mathrm{C} \cdot \mathrm{CH}=$	56.2
Furoyl (3- shown)	CH:CH.O.CH:C.CO-	58.3
Furyl	$\mathrm{OC}_{4} \mathrm{H}_{3}-$	60.1 Ex
3-Furylmethyl	$\mathrm{CH}: \mathrm{CH} \cdot \mathrm{O} \cdot \mathrm{CH}: \mathrm{C}^{-} \cdot \mathrm{CH}_{2}-$	61.1
Galloyl	3:4:5:1-(HO) $3_{3} \mathrm{C}_{6} \mathrm{H}_{2} \cdot \mathrm{CO}^{-}$	58.3
Geranyl,* preferred to 3:7 dimethylocta-trans-2: 6(or 7)-dienyl	7- $\mathrm{C}_{10} \mathrm{H}_{17}{ }^{-}$	55.1 Ex
Glutaminyl	$\mathrm{NH}_{2} \cdot \mathrm{CO}^{\cdot} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-}$	58.5 Ex
Glutamoyl -	$-\mathrm{CO}^{\cdot} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-}$	58.3
Glutamyl	$\mathrm{HO}_{2} \mathrm{C} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-}$	58.5
Glutaryl	$-\mathrm{CO} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{CO}-$	58.3
Glyceroyl	$\mathrm{HO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}(\mathrm{OH}) \cdot \mathrm{CO}^{-}$	58.3
Glycolloyl	$\mathrm{HO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}^{-}$	58.3
Glycyl	$\mathrm{NH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}^{-}$	58.5
Glyoxalinyl	$\mathrm{N}_{2} \mathrm{C}_{3} \mathrm{H}_{3}{ }^{-}$	
Glyoxyloyl	$\mathrm{OHC}^{\text {c }} \mathrm{CO}^{-}$	58.3
Guanidino guanyl, see Amidino	$\mathrm{NH}_{2} \cdot \mathrm{C}(: \mathrm{NH}) \cdot \mathrm{NH}-$	58.9
hendecyl, see Undecyl		
Heneicosyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{19} \cdot \mathrm{CH}_{2}-$	54.1
Hentriacontyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{29} \cdot \mathrm{CH}_{2}{ }^{-}$	54.1
Heptacosyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{25}{ }^{\circ} \mathrm{CH}_{2}-$	54.1
Heptadecanoyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{15}{ }^{\text {. }} \mathrm{CO}^{-}$	58.3
Heptadecyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{15}{ }^{\circ} \mathrm{CH}_{2}-$	54.1
Heptanamido, preferred to hexanecarbonamido	to $\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{5} \cdot \mathrm{CO} \cdot \mathrm{NH}^{-}$	58.6
Heptanedioyl ${ }^{* *}$	$-\mathrm{CO} \cdot\left[\mathrm{CH}_{2}\right]_{5} \cdot \mathrm{CO}-$	58.3
Heptanoyl, replacing enanthoyl and cenanthyl	$n-\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{5} \cdot \mathrm{CO}^{-}$	58.3
Heptyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{5} \cdot \mathrm{CH}_{2}-$	54.1
cycloHeptyl	$\mathrm{C}_{3} \mathrm{H}_{13}{ }^{-}$	54.4
Hexacontyl	$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{58} \cdot \mathrm{CH}_{2}-$	54.1

 58.3
58.3
 M M

Based on rule no.

$3: 4: 5: 1-(\mathrm{HO})_{3} \mathrm{C}_{6} \mathrm{H}_{2} \cdot \mathrm{CO}^{-}$
$\mathrm{C}_{10} \mathrm{H}_{17}{ }^{-}$
58.5 Ex $\stackrel{\infty}{\infty}$ 10 ∞ ∞ 58.3 58.3
58.9
Based
$\mathrm{NH}_{2} \cdot \mathrm{CO}^{-} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-}$
$-\mathrm{CO}^{-} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}^{-}\left(\mathrm{NH}_{2} \cdot \mathrm{CO}^{-}\right.$

Furyl
3-Furylmethyl Furyl
3-Furylmethyl
Radical name Radical name
Furfuryl (2- only)
 Furoyl (3- shown)

Galloyl dimethylocta-trans-2:6(or 7)-dienyl
Glutaminyl
Glutamoyl Geranyl, preferred to 3:7Glutamoyl
Glutamyl
Glutaryl Glutamoyl
Glutamyl
Glutaryl Glyceroyl Glycolloyl Glycolloyl
Glycyl Glyoxalinyl Glyoxyloyl Guanidino Guanidino
guanyl, see Amidino Guanidino
guanyl, see Amidino
hendecyl, see Undecyl

$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{5}{ }^{\circ} \mathrm{CO} \cdot \mathrm{NH}^{-}$ $-\mathrm{CO} \cdot\left[\mathrm{CH}_{2}\right]_{5} \cdot \mathrm{CO}^{-}$
$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{5} \cdot \mathrm{CO}^{-}$
$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{5} \cdot \mathrm{CH}_{2}-$ $\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{58}{ }^{\circ} \mathrm{CH}_{2}-$ hexanecarbonamido
Heptanedioyl ${ }^{* *}$ Heptanedioyl eptanoyl, replacing anthoyl and cenanthyl Heptyl
cycloHeptyl Hexacontyl Galloyl Heptyl

Editorial Report on Nomenclature, 1952.

Radical name
Mercuri
Mesaconoyl
mesidino, see $2: 4: 6$-Tri-
methylanilino
Mesityl
Mesoxalyl
Methacryloyl, preferred to
\quad 2-methylacryloyl
methallyl, see Methylallyl
Methionyl
Methoxalyl
Methoxy
Methoxybenzyl
Methoxycarbonyl, replacing
carbomethoxy
Methoxyphenyl
Methyl
2-methylacryloyl, see
Methacryloyl
Methylallyl, preferved to
methallyl
a-Methylbenzyl
2-Methylbenzyl
Methylene
Methylenedioxy
3 : 4-Methylenedioxybenzyl
3 4-Methylenedioxy-
benzylidene
5-Methylhexyl
Methylidyne
1-Methylpentyl
2-Methylpentyl
2-Methylpentylidene
2-Methylpentylidyne
Methylthio
1-methylvinyl, see isoPropenyl
Morpholino (4-position only)

Formula Based on rule no.	
$\mathrm{NH}_{2} \cdot \mathrm{~N}=$	
HO^{-}	52
$\mathrm{HO} \cdot \mathrm{NH}^{-}$	
$o-\mathrm{HO} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}_{2}-$	61.1 Ex
$0-\mathrm{NO} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}=$	56.2
3:4:1-CH3 ${ }^{\text {O }}$ (HO$) \mathrm{C}_{6} \mathrm{H}_{3} \cdot \mathrm{CH}_{2}-$	$\mathrm{H}_{2}-\quad 61.1 \mathrm{Ex}$
3:4: $1-\mathrm{CH}_{3} \mathrm{O} \cdot(\mathrm{HO}) \mathrm{C}_{6} \mathrm{H}_{3} \cdot \mathrm{CH}=$	$\mathrm{H}=\quad 56.2$
$\mathrm{HO} \cdot \mathrm{N}=$	
HN=	
$\mathrm{C}_{9} \mathrm{H}_{9}{ }^{-}$S	see 59.1
$\mathrm{N}_{2} \mathrm{C}_{7} \mathrm{H}_{5}-$	60.1
$\mathrm{C}_{9} \mathrm{H}_{7}{ }^{-}$	59.1
$\mathrm{NC}_{8} \mathrm{H}_{8}-$	60.1
$\mathrm{NC}_{8} \mathrm{H}_{8}-$	60.1
$\mathrm{CH}_{2} \cdot \mathrm{NH} \cdot \mathrm{C}_{6} \mathrm{H}_{4}{ }^{\circ}=$	56.2
$\mathrm{NC}_{8} \mathrm{H}_{6}-$	60.1
$\mathrm{NC}_{8} \mathrm{H}_{6}-$	60.1
$\mathrm{NC}_{8} \mathrm{H}_{6}-$	60.1
I-	19
OI-	
$\mathrm{O}_{2} \mathrm{I}-$	
$\mathrm{O}=$	52
$\mathrm{CH}_{3} \cdot \mathrm{CH}(\mathrm{OH}) \cdot \mathrm{CO}^{-}$	58.3
$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{10} \cdot \mathrm{CO}^{-}$	58.3
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}-$	${ }_{2}$) $\mathrm{CO}^{-} \quad 58.5$
$\mathrm{C}_{2} \mathrm{H}_{5} \cdot \mathrm{CH}\left(\mathrm{CH}_{3}\right) \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-}$	2) $\cdot \mathrm{CO}^{-} 58.5$
$\mathrm{CH}_{3} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-}$	${ }^{-} \quad 58.5$
$\mathrm{C}_{10} \mathrm{H}_{17}{ }^{-}$	55.1 Ex
$\mathrm{NH}_{2} \cdot\left[\mathrm{CH}_{2}\right]_{4} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}-$	$\mathrm{CO}^{-} \quad 58.5$
$-\mathrm{CO} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}-($ cis-)	58.3
$-\mathrm{CO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}^{-}$	58.3
$-\mathrm{CO} \cdot \mathrm{CH}(\mathrm{OH}) \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}^{-}$	58.3

\quad Radical name
Hydrazono
Hydroxy
Hydroxyamino
2-Hydroxybenzyl
2-Hydroxybenzylidene
4-Hydroxy-3-methoxy-
\quad benzyl
4-Hydroxy-3-methoxy-
\quad benzylidene
Hydroxyimino, replacing
\quad isonitroso
Imino
Indanyl
Indazolyl
Indenyl
Indolinyl
isoIndolinyl
Indolinylidene (3- shown)
Indolyl
isoIndolyl
pseudoIndolyl
Iodo
Iodoso
Iodoxy
Keto (in generic sense)
Lactoyl
Lauroyl *
Leucyl
isoLeucyl
norLeucyl
Linalyl *
Lysyl
Maleoyl
Malonyl
Maloyl

Based on rule no.

 $\mathrm{CH}_{3} \cdot \mathrm{CH}: \mathrm{CH}-$
 $p-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CO}^{-}$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}_{2}-$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}=$ $-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \cdot \mathrm{CH}_{2}-$ $\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}=$ prop-2-enylidene, see Allylidene Propioloyl

61.1 Ex | x |
| :---: |
| $\underset{18}{4}$ |
| $\underset{1}{2}$ | -

Radical name
Phytyl,* preferred to
$3: 7: 11: 15-$ tetramethyl-
hexadec-2-enyl
Pimeloyl *
Piperidino (1-position only)
Piperidyl
Piperidylidene
Piperonyloyl
Pivaloyl
Prolyl
Propanetricarbonyl
\quad (1 : 2: 3- shown)
propargyl, see Prop-2-ynyl
Propenyl ($=$ Prop-1-enyl)
prop-2-enyl, see Allyl
isoPropenyl,* preferred to 1-
methylvinyl
Propenylene
prop-2-enylidene, see Allylidene
Propioloyl
Propionamido
Propionyl
Propionyloxy
Propoxy
isoPropoxy *
Propyl
cycloPropyl
isoPropyl,* replacing sec.-
propyl
sec.-propyl, see isoPropyl
p-isoPropylbenzoyl,
replacing cumoyl
isoPropylbenzyl
isoPropylbenzylidene
Propylene
Propylidene
isoPropylidene *
Pre

\quad Radical name
isoPentylidyne *
Pentyloxy
PisoPentyloxy *
Perimidinyl
Phenacyl
Phenacylidene
Phenanthridinyl
Phenanthryl
Phenanthrylene
Phenazinyl
Phenethyl
Phenetidino (o-, m-, or p-)
Phenoxy
Phenyl
Phenylacetyl
2-phenylacryloyl, see Atropoyl
Phenylazo
Phenylcarbamoyl
Phenylene
Phenylenebisazo
Phenylimino
2-phenylpropionyl, see Hydra-
tropoyl
3-Phenylpropyl
Phenylsulphamoyl
Phenylsulphinyl
Phenylsulphonyl
3-Phenylureido
Phthalamoyl
Phthalazinyl
Phthalidyl
Phthalidylidene
Phthalimido
Phthaloyl
isoPhthaloyl
Pher

Formula B	Based on rule no．	Radical name
$\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{C} \equiv$	56.1	Silyldisilanyl
$\mathrm{CH}_{3} \cdot \mathrm{C}^{\text {：}} \mathrm{C}$	55.1	Silylene
$\mathrm{CH}: \mathrm{C} \cdot \mathrm{CH}_{2}-$	55.1	Silylidyne Silylthio
3：4：1－（HO） $2_{2} \mathrm{C}_{6} \mathrm{H}_{3} \cdot \mathrm{CO}^{-}$	58.3	Stannyl
$\mathrm{OC}_{5} \mathrm{H}_{5}{ }^{-}$	60.1	Stearoyl＊
$\mathrm{N}_{2} \mathrm{C}_{4} \mathrm{H}_{3}-$	60.1	Styryl
$\mathrm{N}_{2} \mathrm{C}_{3} \mathrm{H}_{7}-$	60.1	Suberoyl＊
$\mathrm{N}_{2} \mathrm{C}_{3} \mathrm{H}_{5}-$	60.1	Succinamoyl
$\mathrm{N}_{2} \mathrm{C}_{3} \mathrm{H}_{3}-$	60.1	Succinimido
$\mathrm{C}_{16} \mathrm{H}_{9}-$	59.1	
$\mathrm{N}_{2} \mathrm{C}_{4} \mathrm{H}_{3}-$	60.1	Succinyl
$\mathrm{NC}_{5} \mathrm{H}_{4}-$	60．1 Ex	Sulphamoyl
$\mathrm{N}_{2} \mathrm{C}_{4} \mathrm{H}_{3}{ }^{-}$	60.1	Sulphanilyl
$\mathrm{NC}_{4} \mathrm{H}_{8}-$	60.1	Sulphino
$\mathrm{NC}_{4} \mathrm{H}_{6}-$	60.1	Sulphinyl
$\mathrm{NC}_{4} \mathrm{H}_{4}-$	60.1	Sulpho
$\mathrm{CH}_{3} \cdot \mathrm{CO} \cdot \mathrm{CO}^{-}$	58.3	Sulphoamino Sulphonyl
$\mathrm{N}_{2} \mathrm{C}_{8} \mathrm{H}_{5}-$	60.1	
$\mathrm{NC}_{9} \mathrm{H}_{6}-$	60．1 Ex	Tartronoyl
$\mathrm{NC}_{9} \mathrm{H}_{6}-$	60．1 Ex	Tauryl
$\mathrm{N}_{2} \mathrm{C}_{8} \mathrm{H}_{5}-$	60.1	Telluro
$\mathrm{NC}_{7} \mathrm{H}_{12}-$	60.1	Terephthaloyl Tetracontyl
$o-\mathrm{HO} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CO}^{-}$	58.3	Tetracosyl
${ }^{-} \mathrm{CO} \cdot\left[\mathrm{CH}_{2}\right]_{8} \cdot \mathrm{CO}^{-}$	58.3	Tetradecanoyl＊＊
$\mathrm{HO}_{2} \mathrm{Se}^{-}$		Tetradecyl
$\mathrm{OSe}=$		Tetrahydroglyoxalinyl
$-\mathrm{Se}^{-}$		Tetramethylene
$\mathrm{HO}_{3} \mathrm{Se}^{-}$		Tetrazolyl
$\mathrm{O}_{2} \mathrm{Se}^{-}$		Thenoyl（2－shown）
HSe^{-}		
$\mathrm{H}_{2} \mathrm{~N} \cdot \mathrm{CO} \cdot \mathrm{NH} \cdot \mathrm{NH}-$		Thenyl
$\mathrm{H}_{2} \mathrm{~N} \cdot \mathrm{CO} \cdot \mathrm{NH} \cdot \mathrm{N}=$		Thenylidene
$\mathrm{HO}^{\cdot} \mathrm{CH}_{2} \cdot \mathrm{CH}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{CO}^{-}$	58.5	Thiazinyl
$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{O}^{-}$	70.6	Thiazolidinyl
$\mathrm{H}_{3} \mathrm{Si}-$	70.6	Thiazolinyl
$\mathrm{H}_{3} \mathrm{Si} \cdot \mathrm{NH}^{-}$	70.6	Thiazolyl

Radical name Prop－1－ynyl Protocatechuoyl Pyranyl
Pyrazinyl
㖴
Pyrazolinyl
Pyrenyl
Pyridazinyl
Pyridyl
Pyrimidinyl家
Pyrrolinyl
Pyrrolyl
Pyruvoyl
Quinazolinyl
Quinolyl
soQuinolyl

Salicyloyl
Selenino
Seleninyl
Seleno
Selenono Selenonyl
Selenyl
Semicarbazido Semicarbazono这侖人
Silylamino

Editorial Report on Nomenclature, 1952.
on rule no.
70.6
70.6
70.6
54.1
61.1 Ex
58.3 Ex
58.5 Ex
58.5
58.3
54.1
58.6 Ex
36
58.3
58.3
58.5
58.3
58.3
55.1 Ex
57.2
56.1

60.1
58.9
59.1 Ex

$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}-$

Appendix 2

Rules of Carbohydrate Nomenclature.

[These rules have been agreed between the Carbohydrate Nomenclature Sub-Committee, appointed by the Publication Committee of the Chemical Society, and the Committee on Carbohydrate Nomenclature representing the Divisions of Sugar Chemistry and Technology, Chemical Education, and Biological Chemistry of the American Chemical Society. The Chemical Society's Sub-Committee had the benefit of co-operation with representatives of the Editorial Board of the Biochemical Society. The Publication Committee of the Chemical Society has approved the rules below and instructed that they shall be used forthwith in the Society's publications.

Discussions are still in progress on rules 24, 31, and 32, which will deal with radicals derived from alditols and with acetals and their derivatives. Further aspects of carbohydrate nomenclature are also under consideration. Ed.]

The following nomenclature rules are recommended for use whenever systematic names for carbohydrates and their derivatives are required.

Rule 1 Carbohydrate nomenclature should follow the general principles of established organic nomenclature.

Rule 2 As few changes as possible will be made in terminology universally adopted.
Comment. This is Rule 1 of the Definitive Report of the Commission on the Reform of Nomenclature of Organic Chemistry (1930) (J. Amer. Chem. Soc., 1932, 55, 3905; cf. J., 1952, 5065). The rules of this Report will hereinafter be referred to as I.U.C. Rules (International Union of Chemistry Rules).

Rule 3 The names " aldose" or " ketose" will be used in a generic sense to denote the respective character of the reducing, or potentially reducing, group of the monosaccharide or derivative thereof. In an aldose, the carbon atom of the aldehyde function is atom number one; and in a ketose, the carbonyl carbon atom has the lowest possible number.

For indicating the number of carbon atoms in the chain, the appropriate one of the following names will be used : triose, tetrose, pentose, hexose, heptose, octose, nonose, etc.

Rule 4 Configurational relationships will be denoted by the capital letter prefixes D and L , which in print will be small capital Roman letters and which are pronounced "dee " and "ell" (not "dextro" and "lævo"). Such symbols will be placed immediately before the sugar stem name (see, however, Rules 23 and 28, examples c), and be employed only with compounds which have been definitively related to the reference-standard glyceraldehyde (see Rule 5). In a definitive name, the configurational symbol should not be omitted.

If optical rotational sign under specified conditions is to be indicated, this may be done by adding (dextro) or (lavo), which are italicized in print, or by adding (+) or (-). Racemic modifications may be indicated by the prefixes dL, or (\pm), or inactive, the last being italicized in print.

Examples: D-glucose or $\mathrm{D}($ dextro $)$-glucose or $\mathrm{D}(+)$-glucose
D -fructose or $\mathrm{D}(l$ lavo $)$-fructose or $\mathrm{D}(-)$-fructose
dL-glucose, or (\pm)-glucose, or inactive-glucose

Rule 5 Carbohydrates having the same configuration of the highest-numbered asymmetric carbon atom as that of D (dextro)-glyceraldehyde will belong to the D -configurational series; those having the opposite configuration will belong to the l-series.

D (dextro)-Glyceraldehyde, the configurational reference standard, is by assumption written as (A).

Examples:

D

D

L

L

(A)

D-glucose

Rule 6 The configuration of a group of consecutive but not necessarily contiguous asymmetric carbon atoms (such as $>\mathrm{CH} \cdot \mathrm{OH},>\mathrm{CH} \cdot \mathrm{OMe},>\mathrm{CH} \cdot \mathrm{OAc}$, or $>\mathrm{CH} \cdot \mathrm{NH}_{2}$), containing one to four asymmetric carbon atoms, will be designated by the appropriate one of these prefixes :

Asymmetric carbon atoms
One
Two
Three
Four

Prefixes
glycero
threo, erythro
arabo (arabino), ribo, xylo, lyxo
gluco, manno, gulo, ido, talo, galacto (gala), allo, altro

Each is D or L, as D-talo or L-manno. The prefix, which is derived by omitting the last two letters from the name of the aldose having the same configuration as the group to which it refers, is not to be capitalized and will be italicized in print.

Comment. As regards derivation, exceptions established by usage are arabo and gala.
Examples: In each formula below, the principal function is at \mathbf{Y}.

D-erythro

L-erythro

D-threo

L-threo

D-xylo

D-gluco

D-arabo
D-arabino

D-galacto
D-gala

D-glucopentahydroxypentyl

Rule 7 Ketoses having the carbonyl group at carbon atom number two will be named by means of the suffix "-ulose"; before this will be a prefix denoting the number of carbon atoms in the chain, which, in turn, will be preceded by the prefix denoting the configuration of the group of asymmetric centres present (see Rule 6).

Ketoses having the carbonyl group at a càrbon atom other than number two will be named by inserting the appropriate numeral immediately before the prefix denoting the number of carbon atoms in the chain.

Comment. Trivial names for the hexuloses, established by usage, are : D-fructose, D-psicose, D-sorbose, D-tagatose, and the corresponding names for the L-forms.

Examples:

D-arabo-3-hexulose

L-glucoheptulose

Rule 8 When an alcoholic hydroxyl group of a monosaccharide is replaced by a hydrogen atom, the compound will be named by attaching by a hyphen, before the sugar name, the appropriate numeral (indicating position), a hyphen, and the prefix "deoxy." The configuration of the sugar will be designated, when necessary, as given in Rule 6. This deoxy-moiety can be further substituted.

Comment. Trivial names, established by usage, include : l-rhamnose (6-deoxy-L-mannose); D-fucose (6-deoxy-D-galactose); and D-epirhamnose (6-deoxy-D-glucose).
Examples: 2-deoxyaldehydo-L-xylohexose
4-deoxy- α-D-glyceropentulofuranose (see Rule 18)
2: 6-dideoxy-3-O-methyl- β-d-lyxohexopyranose (see Rule 18)
6 -deoxy- $\alpha-$-idofuranose
2-deoxy-D-erythropentose (2-deoxy-D-arabinose or, as commonly termed, 2-deoxy-d-ribose)
6 -deoxy-6-iodo- α-D-galactopyranose
2-chloro-2-deoxy- α-D-glucopyranose
3 -deoxy- α-D-ribohexopyranose (3-de-oxy- α-d-glucopyranose or 3-deoxy-α-d-allopyranose) (B)
3 -amino-3-deoxy- β-L-galactofuranose

2 -amino-2-deoxy- α-D-glucopyranose (common names: d-glucosamine, chitosamine)
2 -amino-2-deoxy- α-D-galactopyranose (common names: D-galactosamine, chondrosamine)
1-amino-1-deoxy- α-D-fructofuranose (common name: isoglucosamine)
2 -acetamido-2-deoxy- α-D-glucopyranose

Rule 9 When the hydrogen atom of alcoholic hydroxyl group of a carbohydrate is substituted, an italic capital letter O (for oxygen) will be attached by a hyphen directly before the substituting prefix. The O prefix need not be repeated for multiple substitutions by one group. Similar principles apply where necessary to substitution on nitrogen (prefix, N).

Examples:

1:6 di-O-benzoyldulcitol
5-O-methyl-1-phenyl-D-glucopentitol

2-methyl-L-arabitol
2 -deoxy- 2 -(N-acetyl- N-methylamino)- α-L-glucopyranose

Rule 10 When the hydrogen atom of an alcoholic hydroxyl group of a carbohydrate (see Rule 9) is substituted by another atom or group, the name of the parent compound may be retained as the root for the substituted compound. In such names, the prefix (denoting the substituent) will be attached directly to the root and not spaced from it.

Comment. See Rule 16.
Examples: 2:3:4:6-tetra-O-methyl- α-D-glucose
hexa-O-acetyldulcitol
2-O-methyl- β-D-glucose
penta-O-propionyl- β-d-galactopyranose

Rule 11 A radical formed from a sugar by removal of an alcoholic hydroxyl group will be indicated by placing, after the sugar name and separated therefore by a space, the appropriate numeral (indicating position) and a hyphen as prefix to the name of the group attached to the sugar radical.

Examples: α-D-glucopyranose 3-acetate methyl β-d-talofuranoside 2 -benzoate

Comment. Naming of O-acyl derivatives of carbohydrates may follow this terminology or Rule 9.

Examples: (a) Esters of monobasic carboxylic acids:
1, glycerol triacetate; tri- O-acetylglycerol
2, glycerol 1:3-dipropionate; 1:3-di-O-propionylglycerol
3, α-D-glucopyranose penta-acetate; penta-O-acetyl- α-D-glucopyranose
4, β-L-mannofuranuronic acid 2 -benzoate; 2 - O-benzoyl- β-L-mannofuranuronic acid
(b) Esters of sulphonic acids:

1, methyl β-d-galactoside 2:3:4-triacetate 6 -methanesulphonate or methyl $2: 3: 4$ -tri- O-acetyl- $6-O$-methanesulphonyl- β-d-galactoside
2 , methyl α-d-glucopyranoside 6 -toluene- p-sulphonate or methyl 6 - O-toluene- p -sulphonyl- α-D-glucopyranoside
(c) Esters of nitric acid are usually named by Rule 11 :

1, methyl β-d-galactopyranoside 6 -nitrate
2, D-mannitol 1:6-dinitrate
3, methyl 4:6-O-ethylidene- β-d-glucoside 2 : 3 -dinitrate
(d) Esters of polybasic acids are usually named by Rule 11 :

1, β-D-glucopyranose 6 -(dihydrogen phosphate)
2, $\alpha-\mathrm{D}$-glucofuranose 6 -(disodium phosphate)
Cf. also footnote to rule 25 (p. 5116).

Rule 12 Class terms (excepting amine) such as acetal, acetate, alcohol, ether, glycoside, ketone, sulphide, xyloside, and the like, which, when used singly, represent no definite unsubstituted compound, are used as separate words.

Comment. This is in conformity with established usage for such examples as methyl ether and ethyl methyl ketone.

```
Examples: \beta-L-mannopyranose 3-acetate
    \beta-D-glucopyranose penta-acetate
    \beta-D-idose 2:3:4:6-tetramethyl ether
    ethyl D-gluconate
    methyl \alpha-D-mannopyranoside
    ethyl }\beta\mathrm{ -L-xylopyranoside
```

Rule 13 When ethers of polyols (glycols, glycerol, polyhydric phenols, carbohydrates, and the like) are named as ethers, the name of the polyol (a one-word name) will be the first word, " ether " the last word, and the name of the appropriate radical (or radicals) will be the middle word (or words).

Comment. The term " ether" does not apply to compounds derived by substitution of the hydrogen of the hemiacetal hydroxyl group attached to the reducing or glycosidic carbon atom.

Names of bivalent and tervalent radicals derived by removal of two or of three hydrogen atoms from the same carbon atom are sanctioned in the I.U.C. nomenclature (namely, propylidene, I.U.C. Rule 56).

Except for a few established names, however, I.U.C. Rules 21, 33, and 62 show avoidance of distinctive names for multivalent radicals derived by removal of hydrogen atoms from different carbon atoms. The illustrations given below (with glycerol and o-glucose as first names) are in conformity with this decision. Names such as "glyceryl α-monomethyl ether " and " glyceryl $\alpha \gamma$-dimethyl ether" have been used; here "glyceryl" is used incorrectly to denote two different radicals. In " glyceryl trimethyl ether," a third " glyceryl" radical would appear. It is obvious that a ruling should be made against the incorrect use of such multivalent radicals in the naming of polyhydroxy-derivatives.

Examples:

(I)

(II)

(III)
(I) glycerol 1:3-diethyl ether (synonyms: 1:3-diethoxypropan-2-ol and 1:3-di-Oethylglycerol)
(II) β-d-glucose 2:3:4:6-tetramethyl ether, or β-D-glucopyranose tetramethyl ether (synonym: 2:3:4:6-tetra- O-methyl- β-D-glucose)
(III) β-D-glucopyranose 3 -methyl ether (synonym : 3-O-methyl- β-D-glucopyranose)

Rule 14 When a prefix is attached to one of the words in a two- or a three-word name, it modifies only the word to which it is attached and does not modify the remaining words in the name. But if a preceding word in this name is the name of a compound, numerals to indicate position of substitution in it may be placed before the following word (see Rule 11). If necessary, parentheses should be used to avoid ambiguity. Unless otherwise specified (Rules 15 and 17), prefixes take an alphabetical order, regardless of the numerical prefix of each; a compound radical name is treated as a unit.

Thus, triacetyl and diacetyl are to be listed under acetyl. Anhydro-, deoxy-, and dihydroare prefixes.*

* In carbohydrate chemistry, all prefixes not in special type are alphabeticized. The three named are alphabeticized under a, d , and h , respectively.

Comment. This is in conformity with established usage; for example, $\mathrm{MeO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Me}$: methyl methoxyacetate.

Examples:

methyl 2:3:4:6-tetra-O-methyl- α-D-glucoside

methyl 6-O-benzoyl- α-D-glucopyranoside
ethyl 2:3:4-tri- O-acetyl-6- O-benzenesulphonyl- α-D-glucoside methyl 3-O-2'-chloroethyl- β-D-glucopyranoside

Rule 15 The anomeric prefix (α - or $\beta-$), which can only be used in conjunction with a configurational prefix (D or L), will immediately precede the latter. The configurational prefix will directly precede the stem name (see Rule 6).

Comment. In some accepted trivial names (see last example below) the configurational prefix is understood and may be omitted.

Examples: α-D-glucoheptulopyranose ethyl β-D-galactofuranoside methyl α-D-glucopyranoside methyl β-cellobioside

Rule 16 In conformity with established practice, hyphens will be used in names to connect numerals to syllables, or to separate different kinds of characters such as Roman letters from Greek letters or letters from numerals.
[This and similar types of usage follow established practice in the Journal. Ed.]
Examples: α-D-glucose
3-O-methyl- β-L-mannose
penta- O-acetyl- α-D-glucopyranose
methyl 2:3:6-tri-O-acetyl- α-D-glucopyranoside
aldo-octose
1 : 3-4 : 6-di- O-methylenedulcitol (see Rule 30)
2-O-methyl-3 : 4-dimethyl-d-glucose

Rule 17 The acyclic nature of a sugar or derivative containing an unmodified CHO or CO group as the primary function will be indicated by inserting the italicized prefix aldehydo or keto, respectively, immediately before the configurational prefix and stem name.

Examples : aldehydo-D-glucose penta-acetate 3: 6-anhydroaldehydo-D-galactose keto-D-fructose pentabenzoate

Rule 18 The size of the ring in the heterocyclic forms of monosaccharides (both aldoses and ketoses) may be indicated by replacing, in the sugar name, the letters " se" by " furanose" for the 5 -atom ring; "pyranose" for the 6 -atom ring; and " septanose" for the 7 -atom ring. Likewise, for the glycosides (both aldosides and ketosides), the size of the ring may be revealed by replacing the syllable " side" by " furanoside," " pyranoside," or " septanoside."

[^12]Rule 19 The root "glyc" (as in glycose or glycoside) will be used in a generic sense to denote any sugar or derivative thereof, rather than some specified sugar.

Examples: glycose
methyl glycoside
generic
β-L-glucose
methyl α-D-glucopyranoside
ethyl β-D-altropyranoside
specific
methyl β-L-fructofuranoside

Rule 20 A glycoside is a mixed acetal resulting from the exchange of an organic radical for the hydrogen of the hemiacetal hydroxyl group of a cyclic form of an aldose or ketose. It is named by substituting "ide" as a suffix in place of the terminal " e " of the corresponding sugar name and placing before this word, separated by a space, the name of the organic substituent.

Examples:

α-D-glucopyranose

methyl α-D-glucopyranoside
methyl 2-amino-2-deoxy- α-D-glucopyranoside (common name: methyl α-D-glucosaminide)

Rule 21 If the hemiacetal hydroxyl group is detached from a cyclic modification of an aldose or ketose, the residue is a glycosyl (glycofuranosyl, glycopyranosyl, glycoseptanosyl) radical. It is named by substituting " yl" as a suffix in place of the terminal " e " of the corresponding sugar name.

Comment. A glycosyloxy-radical is identical with a glycoside radical (see Rule 20).
Examples:

tetra- O-acetyl- α-Dglucopyranosyl isocyanate

tetra- O-acetyl- α-Dglucopyranosyl thiocyanate
N-methyl-6-O-methyl- β-L-talofuranosylamine
N - n-butyl- α-D-glucopyranosylamine
N-phenyl- α-D-glucopyranosylamine (common name : D-glucose anilide)
N-hydroxy- α-D-glucopyranosylamine (common name : D-glucose oxime)
$9-N-\beta-$-ribofuranosyladenine (common name: adenosine)
$9-N-(2: 3: 5$-tri- O-acetyl- β-D-ribosyl)adenine

Rule 22 A monosaccharide containing more than four configurational asymmetric carbon atoms will be named by adding two or more prefixes indicating the configurations of those asymmetric carbon atoms to a root indicating the number of carbon atoms in the chain and ending with the suffix "-ose" for aldoses and "-ulose" for ketoses.

The configurational prefixes employed are given in Rule 6. The sequence of asymmetric carbon atoms will be divided into units, commencing, with a four-carbon unit, at the asymmetric carbon atom (or atoms) next to the functional group (see below). The order of citation of these prefixes will commence at the end farthest from carbon atom number one, and proceed along the carbon chain to the asymmetric carbon atom nearest to carbon atom number one. In designating anomeric ring forms of aldoses and 2 -ketoses the anomeric prefix here (see Rule 15) will immediately precede the configurational prefix nearest to the root name.

No. of asymmetric carbon
atoms in the sequence

7
8
9
10
11, etc.

Prefixes to be used
one 4 -carbon + one 1 -carbon one 4 -carbon + one 2 -carbon one 4 -carbon + one 3 -carbon two 4-carbon two 4-carbon + one 1-carbon two 4 -carbon + one 2 -carbon two 4 -carbon + one 3 -carbon, etc.

(II)
(I) D-glycero-D-glucoheptose.
(II) methyl L-erythro- β-D-
galactooctopyranoside.

For oxygen-ring forms of ketoses other than 2 -ketoses, the ending (furanose, furanoside, etc.) will, when necessary, be immediately preceded by a pair of numerals identifying the two carbon atoms to which the oxygen ring is attached, the potential ketone group being cited first. When the potential ketone group of an oxygen-ring form is in the middle of the chain, the numerals identifying the position of the original hydroxyl group will be the higher of the two possibilities (see example VI).

Examples:

(III)

(IV)

(V)

(VI)
(III) methyl D-gluco-D-glycero-3-octuloseptanoside
(IV) methyl D-manno-D-erythro-4-nonulo-4 $\rightarrow 7$-furanoside
(V) 7-deoxy-D-arabo-L-vibo-5-deculo-5 \rightarrow 9-pyranose
(VI) L-talo-D-gulo-6-undeculo-6 $\rightarrow 9$-furanose

Comment. Methods for naming, as well as representing correctly, the configuration of the anomeric forms of these ketoses can be devised when such compounds are prepared and their configurations determined.

Rule 23 Names for the polyhydric alcohols (alditols) are derived from the names of the corresponding aldose sugars by changing the suffix " ose" to "itol." For non-meso-compounds, the same family-determining asymmetric carbon as that characterizing the name of the sugar is used.

Examples of (a) Permissible names established by usage:

glycerol	for glyceritol	dulcitol for galactitol
adonitol	for ribitol	perseitol
arabitol	for arabinitol	volemitol
sorbitol	for D-glucitol	

(b) Names requiring D or L :
threitol arabitol mannitol glucitol iditol talitol rhamnitol
(c) Names used without D or L:

glycerol	erythritol	ribitol	xylitol	sorbitol allitol
dulcitol	lactitol	cellobi-itol	melibi-itol	

The names of meso-forms can be used advantageously with D - or L - in naming derivatives which have become optically active by substitution, e.g. :

> 2: 3-O-isopropylidene-D-xylitol or D-(2: 3-O-isopropylidenexylitol) 1-O-methyl-L-glyceritol or L-(1-O-methylglyceritol)
(d) Equivalent names :

D-arabitol and D-lyxitol
D-talitol and D-altritol
D-glucitol and L-gulitol
(e)

erythritol

Rule 24 (Under consideration.)
Rule 25 Aldonic acids, formed from aldoses by oxidation of only the hemiacetal or aldehydic carbon atom to $-\mathrm{CO}_{2} \mathrm{H}$, may be named by substituting " onic acid " as a suffix in place of " ose " of the corresponding aldose. Esters, salts, acid chlorides, lactones, amides, nitriles, and the like, are named in the conventional manner.

Comment. Glyceric acid, arabonic acid, and lactobionic acid will be considered acceptable names in view of their general usage.

```
Examples: cellobionic acid
barium D-gluconate *
penta- \(O\)-acetyl-d-gluconic acid (or d-gluconic acid penta-acetate)
penta-O-acetyl-D-galactonic acid monohydrate (or d-galactonic acid pentaacetate monohydrate)
methyl tetra-O-acetyl-L-arabonate (or methyl L-arabonate tetra-acetate)
```

[^13]```
Examples D-glucono- \(\gamma\)-lactone; D-glucono-1 \(\rightarrow\) 4-lactone; D-gluconic \(1 \rightarrow 4\)-lactone;
 (contd.) :
 D-gluconic \(\gamma\)-lactone *
 D-glucono- \(\delta\)-lactone; \(\quad\)-glucono- \(1 \rightarrow 5\)-lactone; \(\quad\) d-gluconic \(1: 5 \rightarrow\) lactone;
 D-gluconic \(\delta\)-lactone
 2:3:4:6-tetra- \(O\)-methyl-L-altronolactone (or \(2: 3: 4: 6\)-tetra- \(O\)-methyl-
 L-altronic lactone)
 2-amino-2-deoxy-D-gluconic acid (common name: D-glucosaminic acid)
```

Rule 26 Uronic acids, formed from aldoses having a terminal $-\mathrm{CH}_{2} \cdot \mathrm{OH}$ group by oxidation only of this group to $-\mathrm{CO}_{2} \mathrm{H}$, may be named by substituting " uronic acid" as a suffix in place of "ose" of the corresponding aldose name. The hemiacetal or aldehydic carbon atom is carbon number one, and the syllable "ur" has the significance of " $\omega$."

Esters, salts, acid chlorides, lactones, amides, nitriles, and the like, are named in the conventional manner.

Examples: $\alpha$-D-mannopyranuronic acid
tetra-O-acetyl- $\beta$-D-talopyranuronic acid (or $\beta$-D-talopyranuronic acid tetraacetate)
methyl $\beta$-L-galactopyranuronate
barium $\alpha$-L-glucofuranuronate
ethyl tetra- $O$-benzoyl- $\alpha$-D-idofuranuronate
3-O-methyl- $\alpha$-D-ribofuranurono- $5 \rightarrow$ 2-lactone
$\alpha$-D-mannopyranurono-6 $\rightarrow 2$-lactone
$2-\mathrm{O}$-ethyl- $\beta$-L-glucopyranurono- $\gamma$-lactone
Rule 27 If the glycoside radical (see Rule 20) of an aldose glycoside possesses a terminal $-\mathrm{CH}_{2} \cdot \mathrm{OH}$ group, and if this group of the glycoside is oxidized to a carboxyl group, the product may be named by substituting " uronic acid" as a suffix in place of the terminal "e" of the parent glycoside name. The glycoside hemiacetal carbon atom is carbon number one.

Esters, salts, acid chlorides, lactones, amides, nitriles, and the like, may then be named in the conventional manner.

Comment. Parentheses are suitably inserted where it is necessary to distinguish between an ester alkyl group and the hemiacetal alkyl group of a glycoside of a uronic acid.

Examples: methyl $\alpha$-D-mannopyranosiduronic acid
ethyl tri- $O$-benzoyl- $\alpha$-D-idofuranosiduronic acid
methyl $\alpha$-D-glucopyranosidurono- $\gamma$-lactone (or - $6 \rightarrow 3$-lactone) $\dagger$
ethyl $3-O$-ethyl- $\beta$-L-glucopyranosidurono- $\delta$-lactone (or $-6 \rightarrow 2$-lactone) $\dagger$
ethyl (methyl $\beta$-L-galactopyranosid)uronate
barium (bornyl $\alpha$-D-glucofuranosid)uronate
$n$-butyl ( $n$-propyl tri-O-acetyl- $\beta$-d-talopyranosid) uronate
methyl (ethyl 2: 3:4-tri-O-methyl- $\alpha-\mathrm{d}$-galactosid) uronate
Rule $28 \alpha \omega$-Dicarboxylic sugar acids (glycaric acids), formed by the oxidation of aldoses at both terminal carbon atoms, may be named by substituting " aric acid " as a suffix in place of " ose" of the corresponding aldose name.

Examples of: (a) Permissible names established by usage :
tartronic acid for glyceraric acid mannosaccharic acid for mannaric acid
$(+$ )-tartaric acid mesotartaric acid saccharic acid idosaccharic acid
for L -threaric acid for erythraric acid for o-glucaric acid for idaric acid
mucic acid allomucic acid talomucic acid
for galactaric acid for allaric acid for talaric acid
(b) Names requiring $D$ or L :
threaric acid
arabinaric (arabaric) acid
glucaric acid talaric acid
idaric acid mannaric acid

* A dilactone is exemplified by saccharic $1 \rightarrow 4: 6 \rightarrow 3$-dilactone. Note that the first of a pair of positional numerals cited refers to the acid group.
$\dagger$ See rule 25 for alternative methods of naming the lactone grouping.
(c) Names used without $D$ or $L$ :
glyceraric acid erythraric acid
ribaric acid
xylaric acid
allaric acid
galactaric acid

The names of meso-forms can be used advantageously with $D$ or $L$ in naming derivatives which have become optically active by substitution (cf. Rule 23c).

## (d) Equivalent names :

lyxaric acid and arabinaric acid
L-gularic acid and D-glucaric acid
talaric acid and altraric acid

Rule 29 The " glycosides of ortho-ester structure" may be named as the ortho-esters, with the carbohydrate group given as the first term in the name.

Comment. This is in conformity with established usage for such compounds as:
$\mathrm{Me} \cdot \mathrm{C}(\mathrm{OEt})_{3}$ ethyl orthoacetate


Examples: (a)


D-ribose 3:4-diacetate 1:2-(methyl orthoacetate)

It is to be noted that this compound may also be named according to Rule 30 as $3: 4$-di- $O$ -acetyl-1 : 2-O-1'-methoxyethylidene-d-ribose.

The latter system appears to be the better for assignment of an accurate name to the following compound:
(b)

3 : 4 : 6-tri- $O$-acetyl-1 : 2- $O$-1'-chloroethylidene- $\alpha$-Dglucose

Comment. These two examples contain an asymmetric carbon atom marked *, and so two forms are possible. No recommendations are made at present for their differentiation.

Rule 30. Cyclic acetals formed by the reaction of carbohydrates with aldehydes or ketones may be named in accordance with Rule 9 with bivalent radicals as prefixes, such radicals to follow the nomenclature set forth in I.U.P.A.C. Rule 56. In representing more than one cyclic acetal grouping, the numeral pairs are separated typographically when the exact placement of the acetal groups is known.

## Examples:




2: 4-O-methylenexylitol
1: 3-4: 6-di-O-methylene-d-mannitol
(I) 1:2-O-isopropylidene-d-glucofuranose
(II) 1:2-4:5-di-O-isopropylidene-D-fructopyranose
(III) $4: 6-O$-ethylidene-d-glucose
(IV) 1:2-3:4-bis-O-1'-methylpropylidene-D-xylose
(V) methyl 4: 6-O-benzylidene- $\alpha$-D-glucoside
(VI) 1:2-O-2'-chloroethylidene- $\alpha$-D-glucofuranose
(VII) $1: 2-O-1^{\prime}$-chloroethylidene- $\alpha$-D-glucopyranose triacetate

Comment. It is to be noted that in examples (III-VII inclusive), new asymmetric centres are introduced at the carbonyl-carbon atom of the aldehyde or ketone that has reacted with the sugar. In (IV), two such new centres have been introduced. A differentiating nomenclature for such isomers is not here attempted.

Rules 31, 32 (Under consideration.)
Rule 33 An intramolecular anhydride, formed by the elimination of the elements of water from two hydroxyl groups of a monosaccharide molecule (aldose or ketose), is named by attaching the prefix "anhydro" to the sugar name; this prefix is preceded by a pair of numerals identifying the two hydroxyl groups involved. Anhydrides of sugar acids, lactones, alcohols, and the like, are named similarly.

Comment. The substances usually known as sugar anhydrides, glycose anhydrides, or glycosans (whose formation involves the reducing group), as well as the anhydro-sugars (whose formation does not involve the reducing group) are not here differentiated in treatment. The name " levoglucosan" (for 1:6-anhydro- $\beta$-D-glucopyranose) is established by usage, but, except for this, names of glucosan type should not be used.

Examples: 3:6-anhydroaldehydo-d-glucose
3: 6-anhydro- $\beta$-d-glucofuranose
2: 3-anhydro-4-O-methyl- $\alpha$-D-mannopyranose
2:7-anhydro- $\beta$-D-altroheptulopyranose
1:6-3: 4-dianhydro- $\beta$-d-talopyranose
methyl 4 : 6 -di- $O$-acetyl-2 : 3 -anhydro- $\alpha$-D-alloside
2:5-anhydro-d-gluconic acid
3: 6-anhydro-d-gluconic $1 \rightarrow$ 4-lactone
1:4-3:6-dianhydro-D-glucitol, or 1:4-3:6-dianhydro-L-gulitol (see Rule 23)
Rule 34 An intermolecular anhydride, formed by condensation of two monosaccharide molecules with the elimination of the elements of two molecules of water, will be named by the word "dianhydride " placed after the names of the two parent sugars. The position of each anhydride link is indicated by a pair of numerals showing the positions of the two hydroxyl groups involved; the numerals relating to one sugar (in a mixed dianhydride, the second sugar named) will be primed. In each numeral pair, the first number cited will be that which carries an anomeric prefix; both pairs of numerals will immediately precede the word " dianhydride."

```
Examples: di-D-fructopyranose 2: 1'-2':1-dianhydride
 di-D-fructofuranose 2\beta: 3'-2'\beta:1-dianhydride
 D-fructofuranose D-threopentulofuranose 2\beta: 1'-2'\beta:1-dianhydride
```

Rule 35 An oligosaccharide is a compound which, on complete hydrolysis, gives monosaccharides only, in relatively small number per molecule (in contrast to the high-polymeric polysaccharides).

Comment. Most of the naturally occurring oligosaccharides have well-established and useful common names (sucrose, lactose, maltose, cellobiose, melezitose, raffinose, stachyose) which were assigned before their complete structures were known. Rational names may now be assigned as follows.

Disaccharides. A reducing disaccharide may be named as a glycosylaldose (glycosylketose), and a non-reducing disaccharide as a glycosyl aldoside (glycosyl ketoside), from its component parts.

Examples: (a) Reducing:
$\alpha$-lactose : 4-O- $\beta$-D-galactopyranosyl- $\alpha$-D-glucopyranose
(b) Non-reducing :
sucrose: $\beta$-D-fructofuranosyl $\alpha$-D-glucopyranoside, or $\alpha$-D-glucopyranosyl $\beta$-D-fructofuranoside
(c) Glycosides of reducing disaccharides:
methyl $\alpha$-lactoside : methyl 4-O- $\beta$-D-galactopyranosyl- $\alpha$-D-glucopyranoside
Tri- and Higher Oligo-saccharides.
(a) Reducing: Beginning with the first non-reducing component, and following Rule 20, the first glycosyl portion with its configurational prefixes is delineated. This is followed by two numbers, separated by an arrow, in parentheses inserted into the name by hyphens. This numeral pair indicates the respective positions involved in the first glycosidic union, the first number giving the position on the terminal non-reducing component and the second referring to the position on the other component concerned. The next disaccharide linkage is treated similarly (and so on), and the last portion of the name delineates the reducing sugar unit.

## Examples :

$\alpha$-cellotriose :

$O$ - $\beta$-D-glucopyranosyl-( $1 \rightarrow 4$ )-O- $\beta$-D-glucopyranosyl-( $(\rightarrow 4)$ - $\alpha$-D-glucopyranose
$\alpha$-maltotriose :
O- $\alpha$-D-glucopyranosyl-( $1 \rightarrow 4$ )-O- $\alpha$-D-glucopyranosyl-( $1 \rightarrow 4$ )- $\alpha$-D-glucopyranose


O- $\alpha$-D-glucopyranosyl-( $1 \rightarrow 6$ )-O- $\alpha$-D-glucopyranosyl-( $1 \rightarrow 4$ )- $\alpha$-D-glucopyranose
Reducing, branched : By insertion in brackets, one glycosyl substituent is distinguished from the second glycosyl substituent.

$O-\alpha$-D-glucopyranosyl-( $1 \rightarrow 4$ )-O-[ $\alpha-\mathrm{D}-$ glucopyranosyl-( $1 \rightarrow 6$ )]- $\alpha$-D-glucopyranose $\{$ synonym : 4: 6-di- $O-\alpha-$ D-glucopyranosyl- $\alpha$-D-glucopyranose\}
(b) Non-reducing:
raffinose : $O$ - $\alpha$-D-galactopyranosyl-( $1 \rightarrow 6$ )-O- $\alpha$-D-glucopyranosyl-( $1 \rightarrow 2$ ) $\quad \beta$-D-fructofuranoside or $O$ - $\beta$-D-fructofuranosyl- $(2 \rightarrow 1)-O-\alpha-\mathrm{D}$-glucopyranosyl-( $6 \rightarrow 1$ ) $\alpha$-D-galactopyranoside
gentianose: $\quad O$ - $\beta$-D-glucopyranosyl-( $(1 \rightarrow 6)-O-\alpha$-D-glucopyranosyl-( $1 \rightarrow 2$ ) $\quad \beta$-D-fructofuranoside

Conventions regarding Symbols for representing Complex Carbohydrates.
In abbreviated, structural representation of complex carbohydrates, the following symbols may be convenient.

1. Radicals derived from monosaccharides. For trioses to hexoses, the first three letters of the name are used; an exception is that "glucose" is denoted by G. The first of the three letters is capitalized.

Examples : galactose, Gal; fructose, Fru; ribose, Rib; 2-deoxyribose, 2-deoxyRib
2. Furanose, pyranose, and septanose forms. If necessary, the first letter of the syllable, italicized and uncapitalized, is used as suffix to denote the ring form.

Examples: idofuranose, Idof; mannopyranose, Man $p$
3. Uronic acids. The suffix " A" (for " acid") is added to the symbol for the parent monosaccharide.

Examples: galactofuranuronic acid, GalfA; mannopyranuronic acid, ManpA
4. 2-Amino-2-deoxy-aldoses. The suffix " N " (for " nitrogen") is added to the symbol for the parent monosaccharide. The $N$-acetyl derivative is denoted by the suffix NAc.

Examples: glucosamine, GN ; N-acetylgalactosamine, GalNAc
5. Configurational series. The configurational symbols (Rule 4) are not to be omitted when established.

Example: L-arabinose, L-Ara
6. Positional numerals and anomeric prefixes. These are added at the appropriate places, the former being separated from the monosaccharide symbol by a thin space.
7. Joining of symbols. Symbols formed as above are joined by rules.
8. Arrays. Polydirectional arrays may be used.

Examples: xylan:
$\beta-\mathrm{D}-\mathrm{Xyl} p 1-[4 \beta-\mathrm{D}-\mathrm{Xyl} p 1]_{x}-4 \beta-\mathrm{D}-\mathrm{Xyl} p 1-[4 \beta-\mathrm{D}-\mathrm{Xyl} p 1]_{y} \ldots \beta-\mathrm{D}-\mathrm{Xyl} p$

$\beta-\mathrm{D}-\mathrm{Xyl} p 1-[4 \beta-\mathrm{D}-\mathrm{Xyl} p]_{z}$
inulin:
D-Fruf 2——[1 D-Fruf 2] $]_{35-x} \ldots 3$ D-Gp $1 —[1 \text { D-Fruf } 2]_{x} \ldots 1$ D-Gp

## Appendix 3

## Nomenclature of Compounds containing One Phosphorus Atom.

Note 1. This system of nomenclature is readily expansible to arsenic, antimony, and, if desirable, bismuth.

Rule 1. Parent Structures. Parent structures (those not considered to be derived from other forms), which need not necessarily have independent existence, have bound to the phosphorus atom the following groups or combinations of groups only :
(a) H alone or, in quinquevalent compounds only, in combination with one of the groups $(\mathrm{O}),(\mathrm{S}),(\mathrm{Se}),(\mathrm{Te})$, or $(\mathrm{NH})$, and
(b) OH alone or in combination with $\mathrm{H},(\mathrm{O}), \mathrm{H}$ and $(\mathrm{O}),=\mathrm{O}$ in tervalent structures, or $=\mathrm{O}$ and $(\mathrm{O})$ in quinquevalent structures.

No structure having less than three covalent bonds is named. Omission of bond designation, as in $(\mathrm{HO})_{3} \mathrm{PO}$, or use of parentheses, as in $(\mathrm{O})$, indicates that no differentiation is being made between $\rightarrow \mathrm{O}$ and 三O when these satisfy the fourth and fifth valencies of the phosphorus atom. The parent structures are named as follows:

Note 2. The convention has been adopted herein of writing structures with H or R if present, to the left of the $P$, and all other substituents to the right of the $P$; where no $H$ or $R$ is present, $O H$ or OR, if present, is written to the left of the $P$ and all other substituents to the right of the $P$.

## Hydrides

| Phosphine | $\mathrm{H}_{3} \mathrm{P}$ |
| :---: | :---: |
| Phosphine oxide | $\mathrm{H}_{3} \mathrm{PO}$ |
| Phosphine sulfide | $\mathrm{H}_{3} \mathrm{PS}$ |
| Phosphine selenide | $\mathrm{H}_{3} \mathrm{PSe}$ |
| Phosphine telluride | $\mathrm{H}_{3} \mathrm{PTe}$ |
| Phosphine imide | $\mathrm{H}_{3} \mathrm{P}: \mathrm{NH}$ |
| Phosphorane | $\mathrm{H}_{5} \mathrm{P}$ |

Note 3. The logical name for $\mathrm{H}_{5} \mathrm{P}$, phosphane, has been reserved for the system for the polyphosphorus structures.

## Tervalent acids

| Phosphorous acid | $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | $(\mathrm{HO})_{3} \mathrm{P}$ |
| :--- | :--- | :--- |
| Phosphonous acid | $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | $\mathrm{HP}(\mathrm{OH})_{2}$ |
| Phosphinous acid | $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | $\mathrm{H}_{2} \mathrm{P} \cdot \mathrm{OH}$ |
| Phosphenous acid | $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | $\mathrm{HO} \cdot \mathrm{PO}$ |

## Quinquevalent acids

| Phosphoric acid | $(\mathrm{HO})_{3} \mathrm{PO}$ |
| :---: | :---: |
| Phosphonic acid | $\mathrm{HPO}(\mathrm{OH})_{2}$ |
| Phosphinic acid | $\mathrm{H}_{2} \mathrm{PO} \cdot \mathrm{OH}$ |
| Phosphenic acid | $\mathrm{HO} \cdot \mathrm{PO}(\mathrm{O})$ |
| Phosphoranoic acid | $\mathrm{H}_{4} \mathrm{P} \cdot \mathrm{OH}$ |
| Phosphoranedioic acid | $\mathrm{H}_{3} \mathrm{P}(\mathrm{OH})_{2}$ |
| Phosphoranetrioic acid | $\mathrm{H}_{2} \mathrm{P}(\mathrm{OH})_{3}$ |
| Phosphoranetetroic acid | $\mathrm{HP}(\mathrm{OH})_{4}$ |
| Phosphoranepentoic acid | $(\mathrm{HO})_{5} \mathrm{P}$ |

The following special case is named as indicated :

## Phosphonium hydroxide $\mathrm{H}_{4} \mathrm{P}^{+} \mathrm{OH}^{-}$

[Names for compounds in which one or more hydroxyl groups are replaced by acid residues are still under consideration.-ED.]

Note 4. The names of acids recommended above are for the purpose of naming organic compounds of phosphorus. For inorganic chemistry the names approved by the International Union of Chemistry should be used, viz.:

| $\mathrm{H}_{3} \mathrm{PO}_{2} \ldots \ldots \ldots \ldots$. | Hypophosphorous acid <br> $\mathrm{H}_{3} \mathrm{PO}_{3} \ldots \ldots \ldots \ldots$. <br> $\mathrm{H}_{3} \mathrm{PO}_{4}$$\quad$Phosphorous acid | $\mathrm{HPO}_{3} \ldots \ldots \ldots \ldots$ |
| :--- | :--- | :--- |

Rule 2. Structures formed by Substitution. Structures containing a carbon-phosphorus linkage formed by replacement of H bound to P in any parent structure by a hydrocarbon or heterocyclic group are named by prefixing to the parent name the radical name of the replacing group. Structures formed by replacing two $H$ bound to $P$ in any parent structure not containing an OH group by $\mathrm{O}, \mathrm{S}, \mathrm{Se}, \mathrm{Te}$, or NH are named by prefixing oxo, thiono, selenono, tellurono, or imino to the parent name.

Examples:

| phenylphosphonic acid | $\mathrm{PhPO}(\mathrm{OH})_{2}$ |
| :---: | :---: |
| diethylphosphinous acid | $\mathrm{Et}_{2} \mathrm{P} \cdot \mathrm{OH}$ |
| 2-chloroethylphosphine | $\mathrm{H}_{2} \mathrm{P} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}$ |
| oxophosphine | HPO |
| thionophosphine sulfide | HPS(S) |

Rule 3. Structures formed by Operation.
A. Structures formed by the operation of replacing
(1) $(\mathrm{O})$ in a structure containing an OH group bound to P ,
(2) (O) and OH simultaneously,
(3) OH , or
(4) the oxygen in OH in a parent or substituted structure by any group not cited in Rule 2
are named by insertion of the appropriate affix (in alphabetical order if more than one) just preceding the valency suffix (-ic, -oic, -ous, or -ate, -oate, or -ite) in the parent name. For the sake of euphony, an affix beginning with a consonant is always preceded by "o"; the final " o" is dropped if followed by a vowel. Doubling an affix does not change its alphabetical order. The list of affixes is in the annexed Table.
B. Esters are named by prefixing (separated by a space) to the remainder of the name the hydrocarbon radical name and replacing the ending -ic or -ous acid with -ate or -ite, respectively.

Example: diethyl methylphosphonate $\qquad$ $\mathrm{MePO}(\mathrm{OEt})_{2}$

Partial esters are named by inserting (separated by spaces) the term " hydrogen " between the ester radical name and the parent name.

Example: ethyl hydrogen methylphosphonite
$\mathrm{MeP}(\mathrm{OH}) \cdot \mathrm{OEt}$
The location of substituents in esters containing $S$ and its analogues is denoted by the symbols $O_{-}, S-, S e$-, and $T e$ - prefixed to the radical name; these symbols are used in conjunction with the affix " thio" and its analogues, the affixes " thiolo," " thiono," and their analogues being used only where ambiguity would otherwise result. The symbols $N$ - and $P$ - are used also where ambiguity arises.

Examples:

```
OO-diethyl hydrogen phosphorodithioate
\((\mathrm{EtO}){ }_{2} \mathrm{P}(\mathrm{S}) \cdot \mathrm{SH}\)
\(S\)-ethyl phosphinothioate
\(\mathrm{H}_{2} \mathrm{P}(\mathrm{O}) \cdot \mathrm{SEt}\)
\(S\)-methyl \(N P\)-dimethylphosphonamidothioate \(\mathrm{MeP}(\mathrm{O})(\mathrm{SMe}) \cdot \mathrm{NHMe}\)
\(O\)-ethyl \(S\)-methyl hydrogen phosphorothiolothionate

\section*{List of affixes}

Salts are named similarly with the cations preceding all other functions. Example:
\[
O \text {-sodium } S \text {-ethyl phosphonothioite } ~ H P(O N a) \cdot \text { SEt }
\]
C. Fully operated structures no longer having acid or ester functions are named according to the Chemical Abstracts order of prime functions (" The Naming and Indexing of Chemical Compounds by Chemical Abstracts," paragraph 68, Chem. Abs., 1945, 39, 5876).

Examples:
methylphosphonamidic chloride \(\mathrm{MeP}(\mathrm{O}) \mathrm{Cl} \cdot \mathrm{NH}_{2}\)
phosphorocyanidous diamide \(\mathrm{P}\left(\mathrm{NH}_{2}\right)_{2} \cdot \mathrm{CN}\)

\section*{Rule 4. Radicals.}
A. The fundamental radicals attached to another group at the phosphorus atom are named as follows:
\begin{tabular}{|c|c|}
\hline phosphino & \(\mathrm{H}_{2} \mathrm{P}\) \\
\hline phosphinyl & \(\mathrm{H}_{2} \mathrm{P}(\mathrm{O})^{-}\) \\
\hline phosphinothioyl & \(\mathrm{H}_{2} \mathrm{P}(\mathrm{S})-\) \\
\hline phosphinimidyl & \(\mathrm{H}_{2} \mathrm{P}(: \mathrm{NH})^{-}\) \\
\hline phosphinonitridyl & \(\mathrm{HP}(\mathrm{N})-\) \\
\hline phosphoranyl & \(\mathrm{H}_{4} \mathrm{P}\) \\
\hline
\end{tabular}
B. Univalent radicals attached to another group at the phosphorus atom are named as compounds of the fundamental radicals. Substituent groups are named in alphabetical order.

Examples:
\begin{tabular}{|c|c|}
\hline o(methoxy)phosphino & \(\mathrm{MeO} \cdot \mathrm{P}(\mathrm{Cl})-\) \\
\hline (chloromethoxy)phosphino & \(\mathrm{HP}\left(\mathrm{O} \cdot \mathrm{CH}_{2} \mathrm{Cl}\right)-\) \\
\hline hydroxy(methyl)phosphinyl & \(\mathrm{MeP}(\mathrm{O})(\mathrm{OH})^{-}\) \\
\hline \(n\)-butylmethylphosphinothioyl & \(\mathrm{MeBu}^{\mathrm{P}} \mathrm{P}(\mathrm{S})^{-}\) \\
\hline ethylthiophosphinimidyl & HP(:NH)(SMe)- \\
\hline mercapto(methoxy)phosphiny & \(\mathrm{MeO} \cdot \mathrm{P}(\mathrm{O})(\mathrm{SH})^{-}\) \\
\hline
\end{tabular}
C. Bivalent and tervalent radicals formed by the replacement of H with a free valency in a fundamental radical are named
(1) by adding to the final -yl ending the suffix -idene (bivalent) or -idyne (tervalent), or
(2) by dropping the final -o ending and adding the suffix -idene or -idyne.

\section*{Examples :}
\[
\begin{aligned}
& \text { methoxyphosphinylidene } \mathrm{MeO} \cdot \mathrm{P}(\mathrm{O})= \\
& \text { methoxy(methyl)phosphoranylidyne MeP(OMe) } \equiv \\
& \text { phosphinidene } \\
& \text { HP= } \\
& \text { phosphinylidyne ... } \mathrm{P}(\mathrm{O}) \equiv
\end{aligned}
\]
D. Compound radicals are named in the usual manner, denoting the phosphorus portions according to Rules 4B and 4C.

Examples :

> dimethoxyphosphinothioyloxy
> \((\mathrm{MeO})_{2} \mathrm{P}(\mathrm{S}) \mathrm{O}^{-}\)
> amino(methyl)phosphinylthio \(\mathrm{MeP}(\mathrm{O})\left(\mathrm{NH}_{2}\right) \mathrm{S}^{-}\)
> methylphosphinothioylamino
> \(\operatorname{MeHP}(\mathrm{S}) \cdot \mathrm{NH}^{-}\)

\section*{Extended examples of monophosphorus nomenclature.*}

Parent structure : Phosphine \(\mathrm{H}_{3} \mathrm{P}\)
Oxophosphine .. HPO
Thionophosphine ... HPS
Iminophosphine .. HP:NH
Oxopropylphosphine \(\mathrm{Pr}^{\mathrm{P}} \mathrm{PO}\)
Methyl(methylimino) phosphine MeP:NMe
Methylpropylphosphine MePr \({ }^{\mathrm{n}} \mathrm{PH}\)

Parent structure: Phosphine oxide \(\mathrm{H}_{3} \mathrm{PO}\)
Oxophosphine oxide HPO(O)
Iminophosphine oxide HP(O):NH
Thionophosphine oxide HPS(O)
Methyloxophosphine oxide \(\mathrm{MePO}(\mathrm{O})\)
(Ethylimino)methylphosphine oxide \(\mathrm{MeP}(\mathrm{O}): \mathrm{NEt}\)
Phenyldipropylphosphine oxide \(\mathrm{PhPr}_{2} \mathrm{PO}\)

\footnotetext{
* The ", extended examples" are intended to show how names may be derived from the " parent structures." They do not signify that all the names are suitable for all circumstances-indeed in some cases two names are listed for the same substance. Further it is realised that some of the compounds listed are still hypothetical. See also note 4. Ed.
}

* Position of \(S\) is not known in the free acids. If the position of \(S\) is to be designated for purposes of discussion, the " thiolo" or " thiono" names may be used.
\begin{tabular}{|c|c|}
\hline Pl & \[
\mathrm{H}_{2}
\] \\
\hline Phosphoramidotrithioic acid & \(\mathrm{PS}(\mathrm{SH})_{2} \cdot \mathrm{NH}_{2}\) \\
\hline Phosphorodiamidothioic acid & * \(\mathrm{HPOS}\left(\mathrm{NH}_{2}\right)_{2}\) \\
\hline Phosphorodiamidothionic acid & \(\mathrm{HO} \cdot \mathrm{PS}\left(\mathrm{NH}_{2}\right)_{2}\) \\
\hline Phosphorodiamidothiolic acid & \(\mathrm{PO}\left(\mathrm{NH}_{2}\right)_{2} \cdot \mathrm{SH}\) \\
\hline Phosphorodiamidodithioic acid & \(\mathrm{PS}\left(\mathrm{NH}_{2}\right)_{2} \cdot \mathrm{SH}\) \\
\hline Phosphorothioic triamide & \(\mathrm{PS}\left(\mathrm{NH}_{2}\right)_{3}\) \\
\hline Phosphorochloridothioic acid & \({ }^{*} \mathrm{H}_{2} \mathrm{PO}_{2} \mathrm{SCl}\) \\
\hline Phosphorochloridothionic acid & \((\mathrm{HO})_{2} \mathrm{PSCl}\) \\
\hline Phosphorochloridothiolic acid & \(\mathrm{HO} \cdot \mathrm{PO}(\mathrm{Cl}) \cdot \mathrm{SH}\) \\
\hline Phosphorochloridodithioic acid & * \(\mathrm{H}_{2} \mathrm{POS}_{2} \mathrm{Cl}\) \\
\hline Phosphorochloridothiolothionic acid & \(\mathrm{HO} \cdot \mathrm{P}(\mathrm{S}) \mathrm{Cl} \cdot \mathrm{OH}\) \\
\hline Phosphorochloridodithiolic acid & \(\mathrm{POCl}(\mathrm{SH})_{2}\) \\
\hline Phosphorochloridotrithioic acid & \(\mathrm{PSCl}(\mathrm{SH})_{2}\) \\
\hline Phosphorodichloridothioic acid & * \(\mathrm{HPOSCl}_{2}\) \\
\hline Phosphorodichloridothionic acid & \(\mathrm{HO} \cdot \mathrm{PSCl}_{2}\) \\
\hline Phosphorodichloridothiolic acid & \(\mathrm{POCl}_{2} \cdot \mathrm{SH}\) \\
\hline Phosphorodichloridodithioic acid & \(\mathrm{PSCl}_{2}\) - SH \\
\hline Phosphoramidochloridothioic acid & * \(\mathrm{HPOS}(\mathrm{Cl}) \cdot \mathrm{NH}_{2}\) \\
\hline Phosphoramidochloridothionic acid & \(\mathrm{HO} \cdot \mathrm{PS}(\mathrm{Cl}) \cdot \mathrm{NH}_{2}\) \\
\hline Phosphoramidochloridothiolic acid & \(\mathrm{POCl}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{SH}\) \\
\hline Phosphoramidochloridodithioic acid & \(\operatorname{PSCl}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{SH}\) \\
\hline Phosphoramidothioic dichloride & \(\mathrm{PSCl}_{2} \cdot \mathrm{NH}_{2}\) \\
\hline Phosphorodiamidothioic chloride & \(\mathrm{PSCl}\left(\mathrm{NH}_{2}\right)_{2}\) \\
\hline Phosphorimidic acid & \((\mathrm{HO})_{3} \mathrm{P}(: \mathrm{NH})\) \\
\hline Phosphoramidimidic acid & \((\mathrm{HO})_{2} \mathrm{P}(: \mathrm{NH}) \cdot \mathrm{NH}_{2}\) \\
\hline Phosphorodiamidimidic acid & \(\mathrm{HO} \cdot \mathrm{P}(\mathrm{NH})\left(\mathrm{NH}_{2}\right)_{2}\) \\
\hline Phosphorimidic triamide & \(\mathrm{P}(: \mathrm{NH})\left(\mathrm{NH}_{2}\right)_{3}\) \\
\hline Phosphorochloridimidic acid & \((\mathrm{HO})_{2} \mathrm{P}(: \mathrm{NH}) \mathrm{Cl}\) \\
\hline Phosphorodichloridimidic acid & \(\mathrm{HO} \cdot \mathrm{P}(: \mathrm{NH}) \mathrm{Cl}_{2}\) \\
\hline Phosphorimidic trichloride & \(\mathrm{P}(\mathrm{OH}) \mathrm{Cl}_{3}\) \\
\hline Phosphorimidothioic acid & \((\mathrm{HO})_{2} \mathrm{P}(: \mathrm{NH}) \cdot \mathrm{SH}\) \\
\hline Phosphorimidodithioic acid & \(\mathrm{HO} \cdot \mathrm{P}(: \mathrm{NH})(\mathrm{SH})_{2}\) \\
\hline Phosphorimidotrithioic acid & \(\mathrm{P}(: \mathrm{NH})(\mathrm{SH})_{3}\) \\
\hline Phosphoramidimidothioic acid & \(\mathrm{HO} \cdot \mathrm{P}(\mathrm{NH})(\mathrm{SH})\left(\mathrm{NH}_{2}\right)\) \\
\hline Phosphorodiamidimidothioic acid & \(\mathrm{P}(\mathrm{NH})\left(\mathrm{NH}_{2}\right)_{2} \cdot \mathrm{SH}\) \\
\hline Phosphoramidimidodithioic acid & \(\mathrm{P}(\mathrm{NH})(\mathrm{HS})_{2} \mathrm{NH}_{2}\) \\
\hline Phosphoramidochloridimidic acid & \(\mathrm{HO} \cdot \mathrm{P}(: \mathrm{NH})(\mathrm{Cl}) \cdot \mathrm{NH}_{2}\) \\
\hline Phosphorodiamidimidic chloride & \(\mathrm{P}(: \mathrm{NH}) \mathrm{Cl}\left(\mathrm{NH}_{2}\right)_{2}\) \\
\hline Phosphoramidimidic dichloride & \(\mathrm{P}(\mathrm{NH}) \mathrm{Cl}_{2} \cdot \mathrm{NH}_{2}\) \\
\hline Phosphoramidochloridimidothioic acid & \(\mathrm{P}(: \mathrm{NH}) \mathrm{Cl}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{SH}\) \\
\hline Phosphorochloridimidothioic acid & \(\mathrm{HO} \cdot \mathrm{P}(: \mathrm{NH}) \mathrm{Cl} \cdot \mathrm{SH}\) \\
\hline Phosphorochloridimidodithioic acid & \(\mathrm{P}(\mathrm{OH}) \mathrm{Cl}(\mathrm{SH})_{2}\) \\
\hline Phosphorodichloridimidothioic acid & \(\mathrm{P}(: \mathrm{NH}) \mathrm{Cl}_{2} \cdot \mathrm{SH}\) \\
\hline Phosphoronitridic acid. & \((\mathrm{HO})_{2} \mathrm{PN}\) \\
\hline Phosphoramidonitridic acid & \(\mathrm{HO} \cdot \mathrm{PN} \cdot \mathrm{NH}_{2}\) \\
\hline Phosphoronitridic diamide & \(\mathrm{PN}\left(\mathrm{NH}_{2}\right)_{2}\) \\
\hline Phosphorochloridonitridic acid & \(\mathrm{HO} \cdot \mathrm{PNCl}\) \\
\hline Phosphoronitridothioic acid & HO•PN•SH \\
\hline Phosphoronitridodithioic acid & \(\mathrm{PN}(\mathrm{SH})_{2}\) \\
\hline Phosphoramidonitridic chloride & \(\mathrm{PNCl} \cdot \mathrm{NH}_{2}\) \\
\hline Phosphoramidonitridothioic acid & \(\mathrm{PN}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{SH}\) \\
\hline Phosphorochloridonitridothioic acid & \(\mathrm{PNCl} \cdot \mathrm{SH}\) \\
\hline Phosphorobromidic acid & \(\left(\mathrm{HO}_{2}\right) \mathrm{POBr}\) \\
\hline Phosphorocyanatidic acid & \((\mathrm{HO})_{2} \mathrm{PO} \cdot \mathrm{OCN}\) \\
\hline Phosphorocyanidic acid & (HO\()_{2} \mathrm{PO} \cdot \mathrm{CN}\) \\
\hline Phosphorofluoridic acid & (HO) \({ }_{2} \mathrm{POF}\) \\
\hline Phosphoriodidic acid . & (HO\()_{2} \mathrm{POI}\) \\
\hline Phosphorisocyanidic acid & \((\mathrm{HO})_{2} \mathrm{PO} \cdot \mathrm{NC}\) \\
\hline Phosphorisocyanatidic acid & \((\mathrm{HO}){ }_{2} \mathrm{PO} \cdot \mathrm{NCO}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Phosphoro(thiocyanatidic) acid & \((\mathrm{HO})_{2} \mathrm{PO} \cdot \mathrm{SCN}\) \\
\hline Phosphor(isothiocyanatidic) acid & \((\mathrm{HO})_{2} \mathrm{PO} \cdot \mathrm{NCS}\) \\
\hline Phosphorochloridofluoridic acid & HO-POCIF \\
\hline Phosphoramidodithio(thiocyanatidic) acid & \(\mathrm{PS}\left(\mathrm{NH}_{2}\right)(\mathrm{SCN}) \cdot \mathrm{SH}\) \\
\hline Methyl hydrogen phosphoramidate & \(\mathrm{HO} \cdot \mathrm{PO}(\mathrm{OMe}) \cdot \mathrm{NH}_{2}\) \\
\hline Methyl hydrogen methylphosphoramidate & \(\mathrm{HO} \cdot \mathrm{PO}(\mathrm{OMe}) \cdot \mathrm{NHMe}\) \\
\hline Dimethyl dimethylphosphoramidate & \(\mathrm{PO}(\mathrm{OMe})_{2} \cdot \mathrm{NMe}_{2}\) \\
\hline OS-Diethyl \(O\)-hydrogen phosphorodithioate & \(\mathrm{HO} \cdot \mathrm{PS}(\mathrm{OEt}) \cdot \mathrm{SEt}\) \\
\hline \(N\)-Methylphosphoramidimidic acid & \((\mathrm{HO})_{2} \mathrm{P}(\cdot \mathrm{NH}) \cdot \mathrm{NHMe}\) \\
\hline \(N^{\prime}\)-Methylphosphoramidimidic acid & \((\mathrm{HO})_{2} \mathrm{P}(: \mathrm{NMe}) \cdot \mathrm{NH}_{2}\) \\
\hline \(N N^{\prime}\)-Dimethylphosphorodiamidimidic acid & \(\mathrm{HO} \cdot \mathrm{P}(: \mathrm{NH})(\mathrm{NHMe})_{2}\) \\
\hline \(N N^{\prime \prime}\)-Dimethylphosphorodiamidimidic acid & \(\mathrm{HO} \cdot \mathrm{P}(\cdot \mathrm{NMe})(\mathrm{NHMe}) \cdot \mathrm{NH}_{2}\) \\
\hline Dimethyl phosphorochloridate & \(\mathrm{POCl}(\mathrm{OMe})_{2}\) \\
\hline \(O O\)-Diethyl \(O\)-p-nitrophenyl phosphorothioate & \(p-\mathrm{NO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{O} \cdot \mathrm{PS}(\mathrm{OEt})_{2}\) \\
\hline Ethyl methylphosphoramidonitridate & \(\mathrm{EtO} \cdot \mathrm{PN} \cdot \mathrm{NHMe}\) \\
\hline
\end{tabular}

Parent structure : \(\quad\) Phosphonic acid \(\mathrm{HP}(\mathrm{O})(\mathrm{OH})_{\mathbf{2}}\)
\begin{tabular}{|c|c|}
\hline Phosphonamidic acid & \(\mathrm{HPO}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{OH}\) \\
\hline Phosphonic diamide (phosphonamide) & \(\mathrm{HPO}\left(\mathrm{NH}_{2}\right)_{2}\) \\
\hline Phosphonochloridic acid & \(\mathrm{HPOCl} \cdot \mathrm{OH}\) \\
\hline Phosphonic dichloride & \(\mathrm{HPOCl}_{2}\) \\
\hline Phosphonothioic acid & \({ }^{*} \mathrm{H}_{3} \mathrm{PO}_{2} \mathrm{~S}\) \\
\hline Phosphonothionic acid & \(\operatorname{HPS}(\mathrm{OH})_{2}\) \\
\hline Phosphonothiolic acid & \(\mathrm{HPO}(\mathrm{SH}) \cdot \mathrm{OH}\) \\
\hline Phosphonodithioic acid & * \(\mathrm{H}_{3} \mathrm{POS}_{2}\) \\
\hline Phosphonothiolothionic acid & \(\operatorname{HPS}(\mathrm{SH}) \cdot \mathrm{OH}\) \\
\hline Phosphonodithiolic acid & \(\mathrm{HPO}(\mathrm{SH})_{2}\) \\
\hline Phosphonotrithioic acid & HPS(SH) \({ }_{2}\) \\
\hline Phosphonamidic chloride & \(\mathrm{HPOCl} \cdot \mathrm{NH}_{2}\) \\
\hline Phosphonamidothioic acid & * \(\mathrm{H}_{2} \mathrm{POS} \cdot \mathrm{NH}_{2}\) \\
\hline Phosphonamidothionic acid & \(\operatorname{HPS}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{OH}\) \\
\hline Phosphonamidothiolic acid & \(\mathrm{HPO}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{SH}\) \\
\hline Phosphonothioic diamide & \(\operatorname{HPS}\left(\mathrm{NH}_{2}\right)_{2}\) \\
\hline Phosphonamidodithioic acid & HPS \(\left(\mathrm{NH}_{2}\right) \cdot \mathrm{SH}\) \\
\hline Phosphonochloridothioic acid & \({ }^{*} \mathrm{H}_{2} \mathrm{POSCl}\) \\
\hline Phosphonochloridothionic acid & \(\mathrm{HPSCl} \cdot \mathrm{OH}\) \\
\hline Phosphonochloridothiolic acid & HPOCl-SH \\
\hline Phosphonothioic dichloride & \(\mathrm{HPSCl}_{2}\) \\
\hline Phosphonochloridodithioic acid & HPSCl-SH \\
\hline Phosphonamidothioic chloride & \(\mathrm{HPSCl} \cdot \mathrm{NH}_{2}\) \\
\hline Phosphonimidic acid & \(\mathrm{HP}\left({ }^{(N H}\right)(\mathrm{OH})_{2}\) \\
\hline Phosphonamidimidic acid & \(\mathrm{HP}(\cdot \mathrm{NH})\left(\mathrm{NH}_{2}\right) \cdot \mathrm{OH}\) \\
\hline Phosphonimidic diamide & \(\mathrm{HP}(: \mathrm{NH})\left(\mathrm{NH}_{2}\right)_{2}\) \\
\hline Phosphonochloridimidic acid & \(\mathrm{HP}\left({ }^{\circ} \mathrm{NH}\right) \mathrm{Cl} \cdot \mathrm{OH}\) \\
\hline Phosphonimidic dichloride & \(\mathrm{HP}(: \mathrm{NH}) \mathrm{Cl}_{2}\) \\
\hline Phosphonimidothiolic acid & \(\mathrm{HP}\left({ }^{(N H)}(\mathrm{SH}) \cdot \mathrm{OH}\right.\) \\
\hline Phosphonimidodithioic acid & \(\mathrm{HP}\left({ }^{(N H)}\right.\) (SH) \({ }_{2}\) \\
\hline Phosphonamidimidothioic acid & \(\mathrm{HP}(\cdot \mathrm{NH})\left(\mathrm{NH}_{2}\right) \cdot \mathrm{SH}\) \\
\hline Phosphonamidimidic chloride & \(\mathrm{HP}(: \mathrm{NH}) \mathrm{Cl} \cdot \mathrm{NH}_{2}\) \\
\hline Phosphonochloridimidothioic acid & \(\mathrm{HP}\left({ }^{\circ} \mathrm{NH}\right) \mathrm{Cl} \cdot \mathrm{SH}\) \\
\hline Phosphononitridic acid & HPN•OH \\
\hline Phosphononitridic amide & \(\mathrm{HPN} \cdot \mathrm{NH}_{2}\) \\
\hline Phosphononitridic chloride & HPNCl \\
\hline Phosphononitridothioic acid & HPN•SH \\
\hline Phosphonocyanidic acid & \(\mathrm{HPO}(\mathrm{CN}) \cdot \mathrm{OH}\) \\
\hline Phosphonic bromide fluoride & HPOBrF \\
\hline Methyl hydrogen ethylphosphonate & \(\mathrm{EtPO}(\mathrm{OMe}) \cdot \mathrm{OH}\) \\
\hline Methyl P-methylphosphonamidate & \(\mathrm{MePO}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{OMe}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(S\)-Methyl \(N P\)-dimethylphosphonamidothioate & \(\mathrm{MePO}(\mathrm{NHMe}) \cdot \mathrm{SMe}\) \\
\hline Methyl trimethylphosphonamidodithioate & \(\mathrm{MePS}\left(\mathrm{NMe}_{2}\right) \cdot \mathrm{SMe}\) \\
\hline \(N^{\prime}\)-Methylphosphonamidimidic chloride & \(\mathrm{HP}(: \mathrm{NMe}) \mathrm{Cl} \cdot \mathrm{NH}_{2}\) \\
\hline Sodium \(N\)-amyl- \(P\)-(3-bromo-4-2'-chloroethyl)phenylphosphonochloridimidothioate & \\
\hline Phenylphosphonic acid & \(\mathrm{PhPO}(\mathrm{OH})_{2}\) \\
\hline Dimethyl diphenylphosphonimidate & \(\mathrm{PhP}(: \mathrm{NPh})(\mathrm{OMe})_{2}\) \\
\hline Dimethyl \(N\)-ethyl- \(P\)-methylphosphonimidate & \(\mathrm{MeP}(\mathrm{NEt})(\mathrm{OMe})_{2}\) \\
\hline
\end{tabular}

\section*{Parent structure :}

Phosphinic acid
\(\mathrm{H}_{2} \mathrm{PO} \cdot \mathrm{OH}\)
\begin{tabular}{|c|c|}
\hline Phosphinic amide (phosphinamide) & \(\mathrm{H}_{2} \mathrm{PO} \cdot \mathrm{NH}_{2}\) \\
\hline Phosphinic chloride & \(\mathrm{H}_{2} \mathrm{POCl}\) \\
\hline Phosphinothioic acid & \({ }^{+} \mathrm{H}_{3} \mathrm{POS}\) \\
\hline Phosphinothionic acid & \(\mathrm{H}_{2} \mathrm{PS} \cdot \mathrm{OH}\) \\
\hline Phosphinothiolic acid & \(\mathrm{H}_{2} \mathrm{PO} \cdot \mathrm{SH}\) \\
\hline Phosphinodithioic acid & \(\mathrm{H}_{2} \mathrm{PS} \cdot \mathrm{SH}\) \\
\hline Phosphinothioic amide & \(\mathrm{H}_{2} \mathrm{PS} \cdot \mathrm{NH}_{2}\) \\
\hline Phosphinothioic chloride & \(\mathrm{H}_{2} \mathrm{PSCl}\) \\
\hline Phosphinimidic acid & \(\mathrm{H}_{2} \mathrm{P}(\cdot \mathrm{NH}) \cdot \mathrm{OH}\) \\
\hline Phosphinimidic amide & \(\mathrm{H}_{2} \mathrm{P}(\cdot \mathrm{NH}) \cdot \mathrm{NH}_{2}\) \\
\hline Phosphinimidic chloride & \(\mathrm{H}_{2} \mathrm{P}(\mathrm{NH}) \mathrm{Cl}\) \\
\hline Phosphinimidothioic acid & \(\mathrm{H}_{2} \mathrm{P}(: \mathrm{NH}) \cdot \mathrm{SH}\) \\
\hline Phosphinic nitride (phosphininitride) & \(\mathrm{H}_{2} \mathrm{PN}\) \\
\hline \(N P\)-Dimethylphosphinic amide (\(N P\)-dimethylphosphinamide) & \(\mathrm{MeHPO} \cdot \mathrm{NHMe}\) \\
\hline Tetramethylphosphinic amide (tetramethylphosphinamide) & \(\mathrm{Me}_{2} \mathrm{PO} \cdot \mathrm{NMe}_{2}\) \\
\hline Methyl \(N\)-methylphosphinimidate & \(\mathrm{H}_{2} \mathrm{P}\left({ }^{\circ} \mathrm{NMe}\right) \cdot \mathrm{OMe}\) \\
\hline \(S\)-Methyl phosphinothioate & \(\mathrm{H}_{2} \mathrm{PO} \cdot \mathrm{SMe}\) \\
\hline Diphenylphosphinic nitride (diphenyl phosphininitride) & \(\mathrm{Ph}_{2} \mathrm{PN}\) \\
\hline
\end{tabular}

Parent structure : \(\quad\) Phosphorous acid \((\mathrm{HO})_{3} \mathrm{P}\)
\begin{tabular}{|c|c|}
\hline Phosph & \((\mathrm{HO})_{2} \mathrm{P} \cdot \mathrm{NH}_{2}\) \\
\hline Phosphorodiamidous acid & \(\mathrm{HO} \cdot \mathrm{P}\left(\mathrm{NH}_{2}\right)_{2}\) \\
\hline Phosphorous triamide & \(\mathrm{P}\left(\mathrm{NH}_{2}\right)_{3}\) \\
\hline Phosphorochloridous acid & \((\mathrm{HO})_{2} \mathrm{PCl}\) \\
\hline Phosphorodichloridous acid & \(\mathrm{HO} \cdot \mathrm{PCl}_{2}\) \\
\hline Phosphorothious acid & \((\mathrm{HO})_{2} \mathrm{P} \cdot \mathrm{SH}\) \\
\hline Phosphorodithious acid & \(\mathrm{HO} \cdot \mathrm{P}(\mathrm{SH})_{2}\) \\
\hline Phosphorotrithious acid & \(\mathrm{P}(\mathrm{SH})_{8}\) \\
\hline Phosphoramidochloridous acid & \(\mathrm{HO} \cdot \mathrm{PCl} \cdot \mathrm{NH}_{2}\) \\
\hline Phosphoramidous dichloride & \(\mathrm{PCl}_{2} \cdot \mathrm{NH}_{2}\) \\
\hline Phosphorodiamidous chloride & \(\mathrm{PCl}\left(\mathrm{NH}_{2}\right)_{2}\) \\
\hline Phosphoramidothious acid & \(\mathrm{HO} \cdot \mathrm{P}(\mathrm{SH}) \cdot \mathrm{NH}_{2}\) \\
\hline Phosphoramidodithious acid & \(\mathrm{P}\left(\mathrm{NH}_{2}\right)(\mathrm{SH})_{2}\) \\
\hline Phosphorodiamidothious acid & \(\mathrm{P}\left(\mathrm{NH}_{2}\right)_{2} \cdot \mathrm{SH}\) \\
\hline Phosphorochloridothious acid & \(\mathrm{HO} \cdot \mathrm{PCl} \cdot \mathrm{SH}\) \\
\hline Phosphorodichloridothious acid & \(\mathrm{PCl}_{2} \cdot \mathrm{SH}\) \\
\hline Phosphorochloridodithious acid & \(\mathrm{PCl}(\mathrm{SH})_{2}\) \\
\hline Phosphoramidochloridothious acid & \(\mathrm{PCl}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{SH}\) \\
\hline Methyl dimethylphosphoramidochloridite & \(\mathrm{PCl}\left(\mathrm{NMe}_{2}\right) \cdot \mathrm{OMe}\) \\
\hline & \(\mathrm{P}(\mathrm{NHMe})_{2} \cdot \mathrm{SMe}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Parent structure : Phosphonous acid & \(\mathrm{HP}(\mathrm{OH})_{2}\) \\
\hline Phosphonamidous acid & \(\mathrm{HP}(\mathrm{OH}) \cdot \mathrm{NH}_{2}\) \\
\hline Phosphonous diamide & \(\mathrm{HP}\left(\mathrm{NH}_{2}\right)_{2}\) \\
\hline Phosphonochloridous acid & \(\mathrm{HPCl} \cdot \mathrm{OH}\) \\
\hline Phosphonous dichloride & \(\mathrm{HPCl}_{2}\) \\
\hline Phosphonothious acid & \(\mathrm{HP}(\mathrm{SH}) \cdot \mathrm{OH}\) \\
\hline Phosphonodithious acid & \(\mathrm{HP}(\mathrm{SH})_{2}\) \\
\hline Phosphonamidous chloride & \(\mathrm{HPCl} \cdot \mathrm{NH}_{2}\) \\
\hline Phosphonamidothious acid & \(\mathrm{HP}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{SH}\) \\
\hline Phosphonamidothious acid & \(\mathrm{HP}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{SH}\) \\
\hline Phosphonochloridothious acid & HPCl-SH \\
\hline Dimethyl phenylphosphonodithioite & \(\mathrm{PhP}(\mathrm{SMe})_{2}\) \\
\hline Methyl NP-dimethylphosphonamidite & \(\mathrm{MeP}(\mathrm{NHMe}) \cdot \mathrm{OMe}\) \\
\hline Methyl phenylphosphonochloridite & \(\mathrm{PhPCl} \cdot \mathrm{OMe}\) \\
\hline
\end{tabular}

Parent structure: Phosphinous acid \(\mathrm{H}_{2} \mathrm{P} \cdot \mathrm{OH}\)
\begin{tabular}{|c|c|}
\hline Phosphinous amide & \(\mathrm{H}_{2} \mathrm{P} \cdot \mathrm{NH}_{2}\) \\
\hline Phosphinous chloride & \(\mathrm{H}_{2} \mathrm{PCl}\) \\
\hline Phosphinothious acid & \(\mathrm{H}_{2} \mathrm{P} \cdot \mathrm{SH}\) \\
\hline Tetramethylphosphinous amide & \(\mathrm{Me}_{2} \mathrm{P} \cdot \mathrm{NMe}_{2}\) \\
\hline Methyl phosphinothioite & \(\mathrm{H}_{2} \mathrm{P} \cdot \mathrm{SMe}\) \\
\hline Ethylmethylphosphinous chlori & EtMePCi \\
\hline
\end{tabular}

Parent structure : Phosphenic acid \(\mathrm{HO} \cdot \mathrm{PO}_{2}\)
Phosphenic amide (phosphenamide) \(\ldots \ldots \ldots \ldots \ldots \ldots{ }_{*} \mathrm{PO}_{2} \cdot \mathrm{NH}_{2}\)
Phosphenothionic acid HO•POS
Phosphenothiolic acid \(\mathrm{PO}_{2} \cdot \mathrm{SH}\)
Phosphenodithioic acid *HPOS 2
Phosphenothiolothionic acid POS•SH
Phosphenodithionic acid HO•PS \({ }_{2}\)
Phosphenotrithioic acid \(\mathrm{PS}_{2} \cdot \mathrm{SH}^{2}\)
Phosphenothioic amide.................................... POS•NH \({ }_{2}\)
Phosphenodithioic amide \(\mathrm{PS}_{2} \cdot \mathrm{NH}_{2}\)
Phosphenimidic acid HO•P(O):NH
Phosphenodi-imidic acid HO•P(NH) \({ }_{2}\)
Phosphenimidic chloride HO•P(O):NH
Phosphenodi-imidic chloride PCl(:NH) \({ }_{2}\)
Phosphenimidothioic acid *HPOS:NH
Phosphenimidothionic acid HO•P(S):NH
Phosphenimidothiolic acid PO(:NH)•SH
Phosphenimidodithioic acid PS(:NH)•SH
Phosphenodi-imidothioic acid P(: NH\()_{2} \cdot \mathrm{SH}\)
Phosphenimidic amide PO(:NH) \(\cdot \mathrm{NH}_{2}\)
Phosphenodi-imidic amide \(\quad \mathrm{P}(: \mathrm{NH})_{\mathbf{2}} \cdot \mathrm{NH}_{2}\)
Phosphenimidothioic amide PS(:NH) \(\cdot \mathrm{NH}_{2}\)
Phosphenimidothioic chloride P(S)Cl:NH
Phosphenimidic nitride PN(:NH)
Methylphosphenic amide \(\mathrm{PO}_{2} \cdot{ }^{-} \mathrm{NHMe}\)
O-Methyl phosphenothioate MeO•POS
Methylphosphenodi-imidic acid HO•P(:NH)(NMe)
Butyl phosphenate BuO• \(\mathrm{PO}_{2}\)
\(N N^{\prime} N^{\prime \prime}\)-Trimethylphosphenodi-imidic amide \(\ldots . . . \quad \mathrm{P}\left(: \mathrm{NMe}_{2}{ }_{2} \cdot \mathrm{NHMe}\right.\)
Methyl phosphenimidate
\(\mathrm{MeO} \cdot \mathrm{P}(\mathrm{O}): \mathrm{NH}\)
\begin{tabular}{|c|c|c|}
\hline Parent structure : & Phosphenous acid & HO•PO \\
\hline Phosphenous amide & & \(\mathrm{PO} \cdot \mathrm{NH}_{2}\) \\
\hline Phosphenothious acid & & HPOS \\
\hline Phosphenothionous acid & & HO•PS \\
\hline Phosphenothiolous acid & & PO-SH \\
\hline Phosphenodithious acid & & PS.SH \\
\hline Phosphenothious amide & & \(\mathrm{PS} \cdot \mathrm{NH}_{2}\) \\
\hline Phosphenimidous acid & & HO•P:NH \\
\hline Phosphenimidous amide & & \(\mathrm{P}(: \mathrm{NH}) \cdot \mathrm{NH}_{2}\) \\
\hline Phosphenimidous chloride & & PCl:NH \\
\hline Phosphenimidothious acid & & P (:NH) \(\cdot \mathrm{SH}\) \\
\hline \(S\)-Methyl phosphenothioite & & PO-SMe \\
\hline Methyl phosphenite & & \(\mathrm{MeO} \cdot \mathrm{PO}\) \\
\hline \(N\)-Methylphosphenimidous & & \(\mathrm{P}(\mathrm{OH}) \cdot \mathrm{NHMe}\) \\
\hline \(N^{\prime}\)-Methylphosphenimidous & ide & \(\mathrm{P}(\mathrm{NMe}) \cdot \mathrm{NH}_{2}\) \\
\hline
\end{tabular}```

[^0]: * Reprints of this Report may be obtained from the General Secretary, The Chemical Society, price $1 s$. (post free).

[^1]: ${ }^{2}$ This accords with British practice. The radical has been named naphthylene in U.S.A.

[^2]: ${ }^{5}$ Since thienyl, the radical from thiophen is so very similar, thienylmethyl will also be accepted in Chemical Society publications.

 6 Vanillyl in the I.U.P.A.C. text; cf. footnote 3. 7 See footnote 12 below and p. 5062.

[^3]: 12 This important change is accepted by the Chemical Society. The names carbomethoxy and carbethoxy are of long standing and convenient, but this type of name rapidly becomes cumbrous, e.g., carbo-tert--butoxy, carbo-p-nitrobenzyloxy, etc. The new method is more convenient in that it names the radicals in the order in which they appear in the formula, e.g., $\mathrm{CH}_{2} \mathrm{Ph} \cdot \mathrm{O} \cdot \mathrm{CO}$ benzyloxycarbonyl. However, this is additive nomenclature-the alkoxyl radical RO^{-}is added to the bivalent carbonyl radical CO^{-}; most nomenclature is based on the substitutive principle, and adoption of the alkoxycarbonyl names does not mean that the Chemical Society has abandoned the use of substitutive nomenclature wherever this may be practicable. Footnote 9, concerning $\mathrm{R} \cdot \mathrm{SO}_{2}{ }^{-}$, should, however, be noted.

 The new practice incidentally provides also a convenient method of assigning prefix names to radicals from partial esters of polybasic acids, e.g., $\mathrm{CH}_{2} \mathrm{Ph} \cdot \mathrm{O} \cdot \mathrm{CO} \cdot \mathrm{O}^{-}$is now benzyloxycarbonyl-
 oxy; $\mathrm{EtO} \cdot \mathrm{SO}_{2} \cdot \mathrm{O}^{-}$is ethoxysulphonyloxy; $\mathrm{MeO} \cdot \mathrm{PO}_{2} \cdot \mathrm{O}^{-}$is methoxyphosphoryloxy; etc.

 The extended examples (p. 5097) list " carbonyldioxy" as the name for $-\mathrm{O} \cdot \mathrm{CO} \cdot \mathrm{O}^{-}$, but it appears best to restrict its use to cases where this grouping is attached at both ends to one nucleus, as in (A), and to use the names benzyloxycarbonyloxy, etc., as outlined in the preceding paragraph.

[^4]: ${ }^{13}$ The CO group carries the number 1 . This applies also to toluoyl. It must also apply to the acids themselves; thus, e.g., in p-toluic acid the $\mathrm{CO}_{2} \mathrm{H}$ group is numbered 1 , and the methyl group 4, reversing British practice. The necessary changes to conform to I.U.P.A.C. numbering will be introduced forthwith into Chemical Society publications.

 14 The tentative rules published in 1949 contained methallyl, which was changed to 2 -methylallyl during revision in 1951. It may have been an oversight that methacryloyl was allowed to remain unchanged in 1951.

[^5]: ${ }^{15}$ Cf. footnote $13 . \quad 16 \mathrm{Cf}$. note to rule 58.4. $\quad 17 \mathrm{Cf}$. note to rule 58.3.
 14 z

[^6]: 25 The I.U.P.A.C. text gives the Ring Index numbering (cf. however,
 the general remarks about the scope of extended examples).
 25 The I.U.P.A.C. text gives the Ring Index numbering (cf. however,
 the general remarks about the scope of extended examples). 26 Benzimidazole in the I.U.P.A.C. text.
 27 Note that furyl, formed exceptionally
 ${ }^{27}$ Note that furyl, formed exceptionally from furan, is not permitted
 in compounds names such as benzofuranyl.
 ${ }^{28}$ This illustrates the (? tentative) use of H to show the position of
 the "indicated" (" extra") hydrogen atom (cf. p. 5064).
 29 The I UP A C text gives Ring Index numbering, modified by the
 " indicated hydrogen" symbol. British numbering is given above.

[^7]: ${ }^{31}$ The I.U.P.A.C. text gives the Ring Index name 2-oxazolin-2-yl, the first " 2 " indicating the position of the double bond. The version given above illustrates the limited British use of Δ, which is permitted in such cases ($J ., 1950,3702$).

[^8]: ${ }^{34} \mathrm{Cf}$. footnote 31.

[^9]: ${ }^{33}$ The I.U.P.A.C. text gives the Ring Index name thianaphthene but when introduced in an extended example this name is not definitive. If named by the thia (oxa-aza) principle, this substance should be called thiaindene; accordingly thionaphthen is used in Chemical Society publications.

[^10]: ${ }^{85}$ This change should be noted. $\quad{ }^{36} \mathrm{Cf}$. footnote 3.

[^11]: ${ }^{49}$ United to same atom. nitrosamine, in preference to nitroamine and nitrosoamine ($J ., 1950$,
 ${ }^{51}$ This decides the vexed question of phenylazo versus benzeneazo.
 (N.B. It is additive nomenclature; cf. p. 5062 .)

[^12]: Examples: α-L-idofuranose methyl β-d-altroheptulopyranoside

[^13]: * The following exemplify combinations of rules 11 and 25 :
 barium D-gluconate 6-(dihydrogen phosphate)
 barium D-gluconate 6 -(sodium hydrogen phosphate)
 barium D-gluconate 6-(disodium phosphate)
 barium d-gluconate 6-(barium phosphate)

